
Optimal Placement of Controllers in Software
Defined Networks

by

Afrim Sallahi, BIT

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Science in Information and Systems Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

May, 2014

c©Copyright

Afrim Sallahi, 2014

The undersigned hereby recommends to the

Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

Optimal Placement of Controllers in Software Defined
Networks

submitted by Afrim Sallahi, BIT

in partial fulfillment of the requirements for the degree of

Master of Science in Information and Systems Science

Professor Marc St-Hilaire, Thesis Supervisor

Professor Roshdy Hafez, Chair,
Department of Systems and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

May, 2014

ii

Abstract

This thesis focuses on deriving exact methods to place controllers on a network for the

planning problem of Software Defined Network (SDN). A first mathematical model,

referred to as the planning model, is proposed that decides the optimal location to

place controllers on a network while minimizing the overall cost. A second mathe-

matical model, referred to as the expansion model, is proposed that determines the

changes to optimally place controllers on an existing SDN network. The advantages

of the proposed models are to incorporate realistic constrains. A solver optimizes the

exact method for both models with many scenarios and the results are compared.

In the planning problem, as the input size increased, the time to find the optimal

solution also increased in non-polynomial time. The expansion problem results show

that changes can be made to existing implementations by altering many of the input

variables. The expansion model allows control of how much of the existing network

changes.

iii

To my mother and brothers.

May they rest in peace.

iv

Acknowledgments

I would like to express my very great appreciation to Professor Marc St-Hilaire

for his constructive suggestions during the planning and development of this

thesis. His patience, devotion and guidance has helped me get here today.

It has been my great honour and privilege to work under your supervision.

I would like to thank Dr. Georgina Fitzgerald for proofreading my thesis.

I would also like to extend my thanks Dr. Blerim Qela for his guidence.

I am particularly grateful for the assistance given by my brother Arton. Fi-

nally, I would like to thank the rest of my family for their support throughout my

study.

v

Table of Contents

Abstract iii

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures xi

List of Acronyms xiii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Objectives and Contributions 3

1.3 Methodology . 4

1.4 Thesis Overview . 6

2 Background and Related Work 7

2.1 Current Network Architecture . 7

2.2 Introduction to SDN . 10

2.2.1 Control Plane Communications 11

2.3 Current Research on SDN . 13

2.3.1 SDN in different envoirnments 14

2.3.2 Tooling . 14

2.3.3 Virtualization . 15

2.3.4 Routing and Quality of Service (QoS) 15

2.3.5 Controllers . 16

vi

2.3.6 Optimal Controller Placement 17

2.4 Concluding Remarks . 19

3 Optimal Placement of Controllers in SDN 20

3.1 General Optimization Problems . 20

3.2 Planning Model . 21

3.2.1 Known Information . 21

3.2.2 Problem Formulation . 21

3.3 Expansion Model . 28

3.3.1 Known Information . 28

3.3.2 Problem Formulation . 28

3.3.3 Logical Constraints . 32

3.4 Concluding Remarks . 32

4 Results and Analysis 34

4.1 Placement Problem: Results and Analysis 34

4.1.1 Methodology . 34

4.1.2 Detailed Example . 36

4.1.3 Results for Small to Large Input Sizes 46

4.1.4 Results for Increasing Possible Controller Locations 58

4.2 Expansion Problem: Results and Analysis 62

4.2.1 Methodology . 63

4.2.2 Restrictions on Input for Expansion 64

4.2.3 Cost of Removing a Link or Controller 66

4.2.4 Detailed Example . 66

4.2.5 Results for Adding and Removing Switches 73

4.2.6 Results for Different Cost of Removing Links or Controllers . . 78

4.3 Concluding Remarks . 81

5 Conclusions and Future Work 84

5.1 Future Work . 86

List of References 88

Appendix A Small to Large Input Sizes Results 92

A.1 Instance 1 . 93

vii

A.2 Instance 2 . 94

A.3 Instance 3 . 95

A.4 Instance 4 . 96

Appendix B Increasing Possible Controller Locations Results 97

B.1 Instance 1 . 97

B.2 Instance 2 . 98

B.3 Instance 3 . 98

B.4 Instance 4 . 99

Appendix C Controller Placement Program Helper 100

viii

List of Tables

2.1 Sample of entries in an OpenFlow table. 13

4.1 The type of controllers avaliable. 37

4.2 The type of links avaliable. 37

4.3 Toplology and optimization input parameters for the example. 38

4.4 The cost formulation of the planning example. 44

4.5 The type of controllers that are used as input to the planning model. 47

4.6 The type of links that are used as input to the planning model. . . . 47

4.7 The input parameters for the planning problem. 48

4.8 The type of controllers that are used as input when there are a maxi-

mum of five possible controller locations for the planning model. . . . 49

4.9 Results obtained with CPLEX as the input size increases. 50

4.10 Results obtained with CPLEX for the same number of switches and

different potential locations. 59

4.11 Allowed changes to the controller input for expansion. 65

4.12 Allowed changes to link input for expansion. 65

4.13 The effect of the planning cost of $13.00 under different cost-multiplier

scenarios. 66

4.14 Toplologies that are optimized using the planning model before differ-

ent expansion scenarios are performed. 74

4.15 Results obtained with CPLEX for expansion scenarios by adding or

removing switches. 77

4.16 A topology that is optimized before different expansion scenarios are

run to add 10 switches with multiple cost variations. 79

4.17 Results obtained with CPLEX for expansion scenarios with multiple

cost variations. 81

A.1 Small to Large Input Sizes: Instance 1 93

A.2 Small to Large Input Sizes: Instance 2 94

ix

A.3 Small to Large Input Sizes: Instance 3 95

A.4 Small to Large Input Sizes: Instance 4 96

B.1 Increasing Possible Controller Locations: Instance 1 97

B.2 Increasing Possible Controller Locations: Instance 2 98

B.3 Increasing Possible Controller Locations: Instance 3 98

B.4 Increasing Possible Controller Locations: Instance 4 99

x

List of Figures

2.1 Typical network architecture deployed today. 8

2.2 Basic concept of an SDN Network. 10

2.3 SDN views: (a) system view showing Operating Sytem (OS) and hard-

ware level and (b) network view with multiple network elements. . . . 12

2.4 Distributed controller views: (a) every area controller has a global view

and synchronizes with another and (b) the root controller has a global

view only and synchronizes down to lower levels. 17

3.1 The different delays that are calculated in flow setup latency. 27

4.1 Steps to find the optimal solution for placing controllers on a network. 35

4.2 The location of the switches and the potential controller locations for

the placement example. 39

4.3 Optimal solution found by CPLEX for the planning problem example. 45

4.4 Cost of solutions colored against maximum number of controllers with

95% confidence interval. 53

4.5 Solutions time against the number of switches with 95% confidence

interval. 54

4.6 Solution time and cost vs number of switches for a maximum of 5

controller placement locations. 55

4.7 Solution time and cost vs number of switches for a maximum of 10

controller placement locations. 55

4.8 Solution time and cost vs number of switches for a maximum of 15

controller placement locations. 56

4.9 Solution time and cost vs number of switches for a maximum of 20

controller placement locations. 56

4.10 Solution time against the same number of switches and increasing po-

tential locations with 95% confidence interval. 60

xi

4.11 Cost of the solutions while increasing the potential locations and keep-

ing the number of the switchs the same with 95% confidence interval. 61

4.12 Steps to find the optimal solution for expanding an existing SDN network. 63

4.13 The modifed SDN toplogy before the expansion example. Changes are

made by adding S8 and changing σ4 to 1. 67

4.14 Optimal solution found by CPLEX for the expansion example. 72

4.15 Existing SDN network with 30 switches and 40 possible controller lo-

cations. Fifteen new switches are added and 10 controller placement

locations. 75

4.16 Expansion to an existing SDN network after adding 15 switches and

10 possible controller locations. 78

4.17 Existing SDN network with 20 switches and 40 possible controller lo-

cations. 80

4.18 The expansion to existing SDN network by setting the costs of remov-

ing items to 1/10th of what planning costs are. 82

xii

List of Acronyms

API Application Programming Interface. 10, 11, 13, 14

ForCES Forwarding and Control Element Separation. 11

IP Internet Protocol. 1, 26

LTE Long Term Evolution. 14

OS Operating Sytem. 9, 11–14

OSPF Open-Shortest Path First. 10, 13

QoS Quality of Service. 4, 15

RSVP Resource Reservation Protocol. 9

SDN Software Defined Network. iii, 1–7, 9, 11–20, 28, 62, 65, 66, 72, 82

SSL Secure Socket Layer. 11

TCAM Ternary Content-Addressable Memory. 8, 11, 12, 15

TCP Transport Control Protocol. 1, 26

VLAN Virtual Local Area Network. 15

Wi-Fi Wireless Fidelity. 13

xiii

Chapter 1

Introduction

Today, computer networks are used extensively to enable communication throughout

the globe. Only recently, in North America, the dominance of real time entertainment

(comprised of streaming video and audio) continues to be the greatest impact on

computer networks and it will only continue to grow in the future. Other areas

that had an effect on networks are cloud based computing and storage. With such

changes, fixed and cellular networks have to be able to be very adaptable on their

network infrastructure. A resolution to this is moving current networks to Software

Defined Network (SDN).

Two universities using packet switched networking method made the first end-

to-end communication between two hosts in 1975. The Transport Control Protocol

(TCP) and Internet Protocol (IP) were the two protocols that made it possible to

communicate between these two hosts. Two years later, a computer in United States,

United Kingdom and Norway were able to communicate between each other using

the same protocol (TCP/IP). Hardware and software had evolved and networking

equipment had grown rapidly in terms of number of protocols, performance and pric-

ing to support the demand. Unfortunately, innovation is very hard to do because the

network equipment is closed and proprietary. For example, prototyping new protocols

can not be done due to the fact that the ecosystem of network elements is closed.

In the networking field, SDN tries to abstract the networking equipment and

its operating system. The two functions networks perform are control and switching

where the former makes decisions where information goes and the latter is responsible

for moving information hop-by-hop. The switching plane is kept the same but the

control plane is abstracted and moved into a central location within the network and

it is called the “controller”. A network is easiest to adapt when it is designed properly

1

2

and in this thesis, we are interested in the optimal placement of controller(s) in SDN

networks.

1.1 Problem Statement

The single controller within a network has many benefits, one of them is that the

controller has a single view of the whole network and algorithms such as routing are

performed using that view but disadvantages still exist. The problem with a single

controller is that it is the only controller in the network - network traffic for the

most part is known to be bursty and a controller may get overloaded. Even a single

controller sometimes is hard to place in a network because one needs to know where

to place it. That particularly holds when the network includes multiple geographical

regions as one region might have more traffic than the other during different times

of day. For example, employees make use of the network during the day in a given

region and backups run at night in another region. A single controller has problems

with redundancy, load balancing and local events become global to the controller. A

solution to the single controller problem is to use multiple controllers. There is a gap

in research related to multiple controllers because most of the studies have done work

with only one controller.

Having multiple controllers solves problems with redundancy, load balancing or

separating areas in its own domains so the events can be handled locally. Despite its

benefits, using multiple controllers also comes with problems. One big problem is,

again, the placement of such controllers. The question then becomes: how to place

such controllers on a network (and possibly how many are needed). The answer to

this question relies on the network characteristics themselves and what is chosen to

“measure” when deciding where to place the controllers. Furthermore, the placement

method of controllers can be made to be exact or approximate - both of which have

advantages and disadvantages.

Even after the planning of controllers is complete and networks are implemented,

over time, the networks experience growth and require changes. When a network

already has controllers installed, currently, there are no methods for current networks

to expand while considering already installed controllers. This means that the method

that was used to plan the controllers initially cannot be used again to expand a

network. This is due to the fact that changing a network infrastructure is very

3

expensive and a planning model would completely change a network. Therefore, the

expansion of a network is problematic in terms of placement of controllers and a

proper solution needs to be found.

Placement of controllers has already been researched but the research involves

measurement techniques that only rely on latency. Having more measurements within

the placement calculation makes it possible to include more concerns when placing

controllers optimally on a network. Besides not minimizing the cost of controller

placements, some of the concerns that have not been addressed in current research

are: link bandwidth between switches and controllers, controller and link inventory,

flow-setup latency and controller to controller connectivity. This is something that

should be addressed because it would ensure better planning results for new networks.

In this thesis, the aforementioned concerns will be included with proposed exact

mathematical models for optimal placement of controllers on a new network (i.e.green

field scenario) or an existing SDN network.

1.2 Research Objectives and Contributions

Based on the problem statement above, the main objective of this thesis is to model

problems that find the optimal placement of controllers on a network. The ultimate

goal is to contribute to the field of SDN by shedding more light into the controller

placement where different mathematical models are proposed with more realistic con-

strains. As a result, to advance the acceptance of SDN methodology into current

networks, the following contributions are made:

• Propose a mathematical model to plan SDN networks starting from a green field

scenario. Given a set of switches that must be managed by the controller(s),

the model simultaneously determines the optimal number, location, and type of

controller(s) as well as the interconnections between all the network elements.

The goal of the model is to minimize the cost of the SDN while considering

different constraints such as the capacity of the controller(s), capacity of links

between controllers and switches, the flow-setup latency.

• Evaluate the performance of the planning model to make sure it behaves cor-

rectly and analyze the results given different scenarios are optimized. The

following scenarios are considered:

4

– Generate many topologies that start from a small topology size and in-

crease to a large topology size.

– Generate other topologies that determine how the number of possible con-

troller locations affect the optimality.

• The goal is to generalize the planning model proposed in the planning model

so that existing infrastructure (if any) can be considered in the planning. This

generalized model can be used to plan a new network and update existing ones.

The model is able to have different effects on the existing SDN network by

defining a cost for making changes on an existing network.

• Evaluate the expansion of a network to make sure it behaves correctly and

analyze the results given different change scenarios. The following scenarios are

considered:

– Expand multiple existing SDN networks by adding or removing switches

to evaluate the performance and the cost of the expansion.

– Expand an existing SDN network by adding switches and having the cost

to remove existing network items that range from high to low.

The research objectives can be completed using the methodology mentioned in

the next section.

1.3 Methodology

Before methodology is listed, the current network architecture is reviewed in order

to better understand the new concepts. Few disadvantages are listed for the current

network architecture. The SDN architecture is reviewed in order to compare to what

has changed from an operating system’s point of view. A literature on the applica-

tion of SDN is performed in the areas of tooling, virtualization, routing and QoS,

controllers and controller placement. For the controller placement, we review current

research and list its limitations.

The planning of controllers in an SDN network was approached using the following

methodology.

5

Define the controller planning problem:

In order to define the controller problem, we wrote a set of mathematical equa-

tions in order to represent the behaviour of SDN networks. Different constraints

like controller capacity, controller and link types, bandwidth between switch and

controllers and connectivity of the items in the network are considered since

these are important when designing a SDN networks. The goal of the model is

to minimize the cost while determining the number and the types of controllers

to place in a network. To solve the model, we used a solver called CPLEX. The

solver returns the optimal solution or the best solution found if a time limit is

reached. The solution contains the location and type of controllers that were

installed.

Study the results of the planning problem:

A detailed example explains the planning model. Then we optimize using

CPLEX different topologies to analyze how long the solution takes, and how

much the solution costs. The first result analysis starts with a small sample

size and we grow it to large sample size to investigate how the model reacts.

The second result analysis investigates how the cost is affected by having more

controller placement locations for the same number of switches.

Define the expansion controller planning model:

Since we are inclined to include an expansion model to keep the existing network

the same as much as possible, we had to add another costs to the objective

function. The objective function is composed of the same costs as the planning

model but with extra costs that include removing existing items. Conditional

constraints are added in addition to what the planning model contains that allow

the model to make better informed decisions when finding optimal solutions. We

optimize the model using the same CPLEX solver that is used in the planning

model. The solver returns the optimal cost and time taken to find the solutions.

Furthermore, we are able to track how many switches have been removed or

added (given that an existing SDN was optimized). The number of links that

were removed and then planned again are also included in the model solution.

Study the results of the expansion model:

The expansion result and analysis starts with a detailed example that shows

how the expansion model is applied. We investigate how the model reacts to

6

expansions by adding or removing switches. Then, we explore how much of an

effect the cost to remove items from the existing network has on the optimal

solutions of the expansion model. The results are optimized using CPLEX

1.4 Thesis Overview

In this section, an overview of the remainder of the thesis is provided. In Chapter 2,

the literature review shows the wide use of SDN. It also include a comparison between

the current network architecture and the architecture proposed by SDN. Chapter 3

starts with the introduction of the planning problem followed by the mathematical

model for planning controllers on a network. Then, the expansion problem is intro-

duced followed by the mathematical model for expanding an existing network. The

two models are optimized with a different set of topologies and the result is presented

in Chapter 4. The chapter starts with the results for the planning model followed by

the expansion problem. Finally, Chapter 5 summarizes the findings and limitations

and proposes future research directions.

Chapter 2

Background and Related Work

In this chapter, we review current and future network architectures and give their

advantages and disadvantages. In Section 2.1, we review how the control and data

planes currently work on the existing networking architectures. In Section 2.2, we in-

troduce the SDN architecture. In Section 2.3, we review research focusing on planning

and design of SDNs and finally, Section 2.4 concludes the chapter.

2.1 Current Network Architecture

It is important to review the current network architecture to better understand the

new changes proposed. Current network architecture consists of transmission equip-

ment, connectivity between components (wired or wireless), software and communi-

cation protocols. For network connectivity, different mediums connect hardware and

of those connections, different transmission modes exist. Such transmission modes

are: Ethernet, Wireless or Optical. The core of the network is then made of hard-

ware (switches or routers) that is connected together with one or more transmission

methods.

When we consider an end-to-end communication, the information travels through

the network equipment hop-by-hop until it arrives at its destination. Sometimes,

the information is segmented into multiple pieces and is sent through different paths

to get to its destination. Routers and switches are devices that are stationed in the

network to help with the information that is being sent around the network. They are

very sophisticated devices because they decide what, where and how the information

should go through the network. From here on, a router or switch that makes decisions

on a network will be called a network element.

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Deciding where the information should go is not straightforward because the de-

vices require having knowledge about whom else is in the network. This type of

information is managed by protocols that are installed in a network element. The

control plane is a network element that decides where the information is coming from,

what type of information it is and how to reach the destination. These protocols com-

municate with their neighbours and advertise information to keep a concise view of

the whole network. Such protocols install rules on the network elements on Ternary

Content-Addressable Memory (TCAM) tables.

Since we already know where the information goes, the next step is to know how

and where to send such information. In each of the network elements, the TCAM

table is looked up for the next hop information for that particular instance. Once the

next hop port is found, it is just a matter of sending such information on that port for

transmission. This is called the forwarding plane because of the physical operation it

takes to look for information and move it to the next network element.

Figure 2.1: The current network that is deployed today. Data and control informa-
tion is mixed within the core.

Figure 2.1 shows the current architecture of a simple network. In this example,

we have the different departments accessing the network through network elements.

Each of the network elements performs the forwarding plane and the control plane

operations. Within the core of the network, the data path also contains control

CHAPTER 2. BACKGROUND AND RELATED WORK 9

information from the network elements from its protocols. Next, some of the disad-

vantages that will be discussed are: limited innovation, difficult management, and

costly equipment.

Limited innovation

One of the biggest issues that the current architecture faces is that it is a closed

system. Networking equipment manufacturers have their own hardware, operating

system, implementation of standards and their own extended set of features. This

means that new protocols cannot be tested and verified in a timely fashion. This is

due to the fact that only the manufacturer has access to the system. In the research

community, one who wishes to test a new protocol cannot do so. The time taken

when requesting new protocols with the networking equipment companies is very

long because they are the ones who develop, verify and finally release it with the

proprietary OS.

Difficult management

The operating system in such devices is closed for outside use. Besides Resource

Reservation Protocol (RSVP) and its own management console, there is no other

method to command the networking equipment. The operating system does not ex-

pose access to outside to command its internal system and this is a disadvantage

because only two methods to manage it exist (RSVP and console). When a large net-

work has proprietary hardware from different vendors, it makes it difficult to manage.

Costly

The equipment is extremely expensive. This is due to the fact that the cost of each

network element includes time spent on developing and verifying the protocols, which

is a lengthy process. For example, it is impossible to get networking equipment with

only one protocol implemented by a particular manufacturer. The whole OS will be

included for that particular model of hardware and its supported features. This drives

costs high.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

2.2 Introduction to SDN

The basic concept of SDN is to separate the control plane from the forwarding plane

and provide abstraction between the controller and the network elements. Thus

indicating that when a controller performs commands on a network element, the

controller does not have to know the network element layers. Since every network

element performs the same control plane procedures, it would make sense to move the

“brain behind” the network (control plane) to a single location. The control plane

is now on a centralized location and it is called “Controller”. The controller then

communicates with the networking elements by exposed Application Programming

Interface (API). The controller is responsible for installing rules to a network element

through that API.

Figure 2.2: Typical SDN network architecture. Data and control information is
separate. The controller keeps a global view of the network.

Figure 2.2 shows the new changes to the same network layout shown in Figure 2.1.

The difference here is that a controller is placed and the networking elements com-

municate with it through different transmission methods. The controller probes the

network elements to find the topology of the network. Based on this, the controller

has enough information for a protocol to run. Such different protocols that are within

the controller are called applications. Applications generate flows and the controller

installs the flows to each of the network elements. For example, an application that

CHAPTER 2. BACKGROUND AND RELATED WORK 11

is well known is the Open-Shortest Path First (OSPF) protocol. When OSPF is in-

stalled into a controller, it generates routing rules, and then installs them throughout

the network.

With SDN, the disadvantages mentioned above no longer exist. SDN invites in-

novations due to its exposed interfaces of the controller. Similarly, management will

not be an issue since the rules that controllers install remotely are automatically

translated to the network elements’ rules by its own OS. Finally, the costs should be

lower for networking elements because protocols are no longer needed and a network

element comes as bare-bone as possible with just the OS. The applications running

on the controller will be the replacement of the protocols in the current network el-

ements. These protocols can be purchased as needed or be found free from the open

source community.

2.2.1 Control Plane Communications

The communication between controller and network elements will be reviewed in this

section. The question of how is it possible for multiple vendor equipment to coexist

with the same controlling unit (the controller) will also be discussed in this section.

The two most promising standards that exist today that define controller protocol

communication to network element are OpenFlow [1] and Forwarding and Control

Element Separation (ForCES) [2]. Since OpenFlow is already implemented and is

simpler to understand, we will be referring to this standard when explaining SDN

concepts.

Abstraction is something that SDN aims at bringing to current networks and this

means that common communication modules exist in each controller and network

element. The network element implements OpenFlow standard and so does the con-

troller. The calls that the controller makes to each of the network elements are done

using API that are understood by the OS of the network element. For the network

element’s OS, these commands are translated into their own system specific rules and

are most likely installed into TCAM table(s). Figure 2.3 shows such abstraction. Part

A of Figure 2.3 shows the instance of OpenFlow within the network element’s OS. The

network element handles the controller communication using the module that imple-

ments the OpenFlow. In this case, both the controller and network element have the

same OpenFlow standard. Once the network element implementation of OpenFlow

completes communication with the controller, it then translates flow tables to its own

CHAPTER 2. BACKGROUND AND RELATED WORK 12

rules and installs them to the local system. OpenFlow’s specification indicates that

the protocol must establish connection and run over Secure Socket Layer (SSL) for

the controller to communicate with networking elements.

Controller
OF

O FControl Path

Data Path (Hardware)

Network Operating System

Open Flow Protocol (SSL)

(a) System View

Network Element
(Vendor A/Switch)

Controller

OpenFlow(OF)

OF

Network Element
(Vendor B/Router)

OpenFlow(OF)
Network Element

(Other Vendor / Switch)

OpenFlow(OF)

Get_Stats()Remove_Flow() Add_Flow()

(b) Network View

Figure 2.3: SDN views: (a) system view showing OS and hardware level and (b)
network view with multiple network elements.

When we consider a network view as shown in part B of Figure 2.3, we can

see, in a higher level, how the abstraction applies to the controller and network

elements. The figure shows three different manufacturers translating and performing

actions that the controller has requested on each network element. Network element

A needs to perform and respond to the request Get_Stats(), this is a call that

would get statistics from the network element and return them to the controller.

Similarly, the second network element (from vendor B) is requested to remove a flow.

In this instance, the OS would translate to an action where one or more entries from

the TCAM table would be removed. Finally, the last example with another vendor

shows that the controller performs the action to add an entry to the TCAM table.

The translation of rules between the OpenFlow protocol and the network element

is the responsibility of the vendor amd must be implemented in the OS. Each switch

reports its capabilities and the standard version it has implemented of OpenFlow.

Based on OpenFlow 1.1 specification, Table 2.1 shows some of the possible fields

that can be matched by a network element when processing the flows. With the

fields shown in the table, any network element can be made to have capabilities of

a switch, router, firewall, deep packet inspector, balancer, and many other functions

that currently exist in multiple equipment types.

Another important aspect to uncover here is the acceleration of innovation. If we

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Table 2.1: A flow table that shows different scenarios of flows that can be installed
into network element.

A
ct
io
n

S
rc

M
A
C

D
es
t

M
A
C

E
th

T
y
p
e

V
L
A
N

ID S
rc

IP D
st

IP IP P
ro
to

IP
S
rc

P
o
rt

IP
D
st

P
o
rt

Flow
Switch

Port3 AA:EE AA:BB 0800 12 1.2.3.4 4.5.6.7 6 80 80

Ethernet Local 15:AE * * * * * * * *

Routing Port5 * * * * * 9.9.9.9 * * *

NAT Port2 * * * * 1.2.3.4 * * * *

Firewall Drop * * * * * * * 1214 1214

Load
Balancer

Port8
Port9

* * * * * 2.2.2.3 * * *

Controller * * * * * * * * * *

wish to have the OSPF routing algorithm on SDN, then we would have to implement

the protocol in software in the controller. Since the controller has a global view of

the network, running OSPF is simply done in one place. By running OSPF on the

controller, the protocol would build the shortest paths and generate the flow tables

for each route. Each of the flows are then installed on the correct network element by

the controller using the available API. Here, when implementing the OSPF protocol

into the controller, there is no need to know how to communicate with the networking

elements and understand the operating system. This should accelerate innovation in

the networking field.

2.3 Current Research on SDN

There are many organizations, companies, and universities that are focused on deriv-

ing standards, frameworks and tooling for SDN. Open Network Foundation is respon-

sible for analyzing SDN requirements, and evolving the OpenFlow Standard. There

is the OpenDaylight project that focuses on community-led and industry-supported

open source framework for the SDN paradigm. There are companies such as Cisco,

NEC, Brocade and others who have shown support for SDN by implementing various

controller protocols that are available.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.3.1 SDN in different envoirnments

SDN has been picked up by many of the different areas of the networking sector,

especially the communication section. This section shows efforts made in introduc-

ing SDN into different fields of communication networks. This ranges from wireless

in personal Wireless Fidelity (Wi-Fi) and sensor networks, to wired with ethernet,

optical and finally to carrier networks. Ever since the introduction of pure packet

networking in the cellular networks of Long Term Evolution (LTE), efforts are being

made to improve the networking aspect of it [3–5]. The authors in [6] look into ways

that SDN will help with the sensor networks when dealing with sensor nodes because

the nodes are vulnerable and special care has to be taken. Work has been done to

include optical networks in [7–9]. Effort in combining packet and circuit switched

networking is done in [10, 11]. The authors in [12] looked at integrating optical into

the SDN controller standard of OpenFlow. In [13], the authors manage to exper-

imentally evaluate and converge packet and circuit network setup. This is a huge

improvement because many physical layers can coexist within the same network and

can be managed by the same controller. As we can see, although SDN is a rela-

tively new technology, it is being used in many different environments and for various

applications.

2.3.2 Tooling

Opening the current OS platforms through APIs brings many benefits to the net-

working area. Since programmability is involved in advancing the SDN landscape by

being able to program protocols into the controller, then the right tooling is required

to help with the process. As a solution is developed, debugging is used extensively to

find problems that sometimes cannot be found. The authors in [14] have developed

a debug tool that can log packet backtraces and set breakpoints in an SDN network.

Verification is also an essential tool for providing error free solutions and the authors

in [15] build a tool called No bugs In Controller Execution (NICE). They generate

streams of packets of different events so that the controller undergoes real-time testing

before it is put on a network. The authors in [16] use an algebraic symbolic verifi-

cation algorithm where they model the flow tables operation and behaviours. The

authors in [17] have developed Mininet. Mininet is a tool that is used to virtualize

hosts, switches and topologies on computing power as small as a laptop. Here, the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

ability to prototype, implement and test a solution on many full-scale network topolo-

gies is possible. Once a solution is verified with Mininet, minimal to no changes are

required to deploy the solution on a real SDN network. When considering testing the

networks and security is involved, the authors in [18] have written Future Internet

Testbed with Security (FITS) as a testbed for SDN networks. The authors in [19]

have prototyped a tool that helps detect hidden inconsistencies in the network by

exploring integrated network behaviour of real switch execution.

2.3.3 Virtualization

Besides the actual tooling, work has been done on the virtualization area of network-

ing. Virtualization has matured throughout the years with intensive research into the

areas of cloud computing. Interesting problems in the virtualization fields have arisen

and SDN is already seen as a method of solving such problems. For instance, a band-

width intensive task in a set of hundreds of virtualized hardware is to copy or move

the virtual machines around the network. A solution is to find the best paths to move

such traffic around the network with the help of SDN. The problem with backing up

or moving virtual machines is investigated in [20, 21]. In [22], the authors introduce

an SDN platform designed for network virtualization and their experimental results

show that the tool can deliver different types of virtualization services.

2.3.4 Routing and QoS

In relevance to virtualization, routing helped find better paths in copying virtual ma-

chines. Then, routers were thought of as just software and ideas of virtualizing router

functionality came along in [23]. The virtual router would reside in memory and the

rules would be installed in the TCAM tables where the lookup performance would

not be affected. Furthermore, router as a service was proposed with its architecture

and algorithms [24]. In [25], the authors propose a routing technique that adds the

path to the source packet(s) and using this routing path, the packet traverses the net-

work. Because the path is already computed and attached to the packets, there will

be less communication with the controller, thereby reducing the controller traffic by

50% [25]. Different from routing, which focuses on available paths, quality of service is

to provide guaranteed availability of resources. In [26], the virtualization of switches

CHAPTER 2. BACKGROUND AND RELATED WORK 16

performs bandwidth isolation by marking Virtual Local Area Network (VLAN) pri-

ority bits in packets. The problem here is that the VLAN priority field has a length

of three bits, which results in eight possibilities. The authors in [27] propose a fea-

ture to the controller that provides quality of service based on per-flow rate limiters

and priority assignment. Some of the interesting solutions to QoS in SDN relate to

scheduling algorithms and max-min fair share of traffic shaping [28]. Minimum cost

flow optimizations are applied to adaptive video streaming in [29,30].

2.3.5 Controllers

The controller will face many technical challenges and since it is the brain of the

new network paradigm, it should be looked at in more detail. Today, there exists

many open source controllers that are available for many platforms and in many

programming languages. They are: NOX [31], POX [31], Trema [32], SNAC, Flowvi-

sor [26], Beacon and Floodlight [33]. Similarly, commercial controllers are now avail-

able. There has been research done in the controller itself and such work areas

include: performance and capability, redundancy and distributed communication be-

tween controllers in the scenario of multiple controllers. In [34], the authors test the

performance of the controller on a single server and shown that it can handle over

1.6 million requests per second with an average response time of 2ms. Furthermore,

the authors in [35] present an extensible SDN control system where the authors im-

plement a controller using the Glasgow and Haskell Compiler and determine that

their solution can serve up to 5000 switches with a single controller of 46 cores. They

were able to achieve a throughput of 14 million flows per second with a latency of

200 µs. One controller might serve well in many scenarios but sometimes we need

more than one to provide redundancy, load balancing, geographically local footprint

or scalability [36].

Introducing multiple controllers brings up many questions and the authors in [37]

look at the question of how to separate areas in its domains and which controllers

should be responsible for those areas. Research from distributed computing is used to

apply local algorithms to better understand how to keep controller events within their

own domain. To do so, it is suggested that link assignment from controller to switches

can be solved using semi-matching problem. Here, given that there are many domains

and many controllers, the authors proposed previous greedy algorithms to link each

domain to a controller. Furthermore, the authors suggest the flat or hierarchical

CHAPTER 2. BACKGROUND AND RELATED WORK 17

layout of the controllers, as shown in Figure 2.4. The flat model performs the the

same way as the open shortest path first routing in relation to state and events in

a network. In the hierarchical model, the top-most layer has complete knowledge

of the network and only synchronizes with the two other layers underneath and the

layer two levels underneath the top level synchronize with layers underneath it. The

hierarchical model uses local algorithms to link its controllers to domains and results

in a only locally optimal solution. Here, the suggested solution does not consider how

big the domains are and could result in specific areas having a lot more controller

traffic than others. The solutions could also include the different type of controllers

where each controller can only handle a certain amount of traffic.

(a) Flat View (b) Hierarchical View

Figure 2.4: Distributed controller views: (a) every area controller has a global view
and synchronizes with another and (b) the root controller has a global view
only and synchronizes down to lower levels.

2.3.6 Optimal Controller Placement

Similar to connecting controllers to switches in the previous paper, this section reviews

the controller placement methods that are researched so far. The controller placement

problem for SDN networks was first introduced in 2012 [38]. The authors present a

method of placing controllers in a network and connecting switches with controllers

that is based on k-median and k-center algorithms. These algorithms use a metric

that determines which switches belong to which controller. The metric that is used

is the latency from possible controller placement areas to the switches. Both, k-

median and k-center are used to determine which of the algorithms perform better

for different topologies. The algorithm assigns switches to a controller by clustering

CHAPTER 2. BACKGROUND AND RELATED WORK 18

a set of switches and placing a controller to support such switches. The results are

dependent on how the switches are laid out on a topology. If all the switches are

equally the same latency (distance) away, then the clustering may have inconsistent

results because it is not able to group all the switches properly. The two inputs that

are used in the clustering algorithms are: “K” and cluster initialization. The input

parameter K instructs the algorithm that there must be exactly K groups formed.

The number of controllers installed in the network is the value of K. The initialization

parameter is important because for the same K, if different initialization values are

used, then different final clustering is formed [39]. This algorithm runs by trial and

error because for the same topology, the algorithm has to be run multiple times to find

the best clustering. This is a limitation because we believe that the optimal number

of controllers and their locations must be found for each problem. A better method

compared to clustering is the exact optimal placement of controllers. Furthermore,

more than one parameter (latency) can be considered.

The authors in [40] propose a greedy approach to the placement of controllers in a

network by maximizing the reliability of an SDN network. The probability of failure

of each network component is known and on each candidate controller location, the

shortest paths to all switches is found. A controller location is picked based on the

minimum failure from the components and the shortest paths.

The authors in [41] propose a more complete solution by dynamically provisioning

controllers. It is a framework that automatically adapts the number of controllers

and links that are active while keeping the state of the network in consideration.

The framework collects statistics, sets up flows, synchronizes between controllers and

reassigns switches to controllers in real time. The costs of all of those tasks are

kept to find the optimal solution. An optimal solution is found by greedy knapsack

algorithm and simulated annealing. Since the framework always adapts to current

network traffic, the greedy solution could possibly assign switches to controllers with

the existing configuration and thus producing overhead. The simulated annealing

algorithm takes into consideration the current state of the assignment and does not

reassign the same configuration. In a network, it is realistic to have different connec-

tion capacities between network elements but the authors have neglected this fact.

Therefore, different link capacities should be included in the overall optimization and

a method for optimal placements of controllers in the network. The framework only

answers the question of the optimal switch to controller assignment while taking the

CHAPTER 2. BACKGROUND AND RELATED WORK 19

current traffic patterns and the overhead the framework creates into consideration.

Here, the authors assume that there are more controllers present and it is possible to

have idle controllers in the network.

2.4 Concluding Remarks

The literature review shows that the optimal controller placements only involve one

or two input parameters. In the case of placing controllers using clustering, only

latency is used to determine controller placement locations. Furthermore, a greedy

approach that improves reliability minimizes the failure probability while keeping

shortest distance between installed controller and switches. A framework that auto-

matically assigns links to switches from the controllers assumes that the controllers

are already placed in an SDN network.

In the next chapter, we will find optimal solutions models that place controllers

on a new network or expand an existing SDN network. Besides minimizing the cost

of the network, various constrains like: link bandwidth between switches and con-

trollers, controller and link inventory, flow-setup latency and controller to controller

connectivity will also be considered.

Chapter 3

Optimal Placement of Controllers in SDN

On a network of many switches, finding the best location to install a single controller

is not an easy task. The same question is relevant when finding the best placement

locations for multiple controllers. This chapter introduces the formulation of a math-

ematical model that simultaneously determines the optimal number, location, and

type of controller(s) as well as the interconnections between all the network elements.

The chapter starts with an introduction on the general optimization problems.

Then the controller placement problem is introduced and formulated.

3.1 General Optimization Problems

Optimization problems are used in many industries because the aim is to improve

an objective [42]. Optimization is widely used in the networking field for various

purposes: channel assignments, task scheduling in cloud computing, cellular network

planning and many other areas [43]. Such a problem has the form (f, β, I), where

• f is the objective function that must be minimized or maximized along with

the decision variables,

• β is a set of constraints that involves the decision variables which, in turn,

affects the size of the search space and

• I is the input to the problem that defines the search space.

The objective function and constrains indicate whether the problem is linear or

non-linear. Section 3.2.2 introduces a binary integer problem for placing controllers

in a SDN network.

20

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 21

3.2 Planning Model

3.2.1 Known Information

In order to formulate the mathematical model, we assume the following information

is known:

• The location of all the switches in the network. For each switches, the traffic

that is generated to the controllers is also known.

• The bandwidth available for each link type to connect the switches and the

controllers.

• The characteristics of the different types of controllers that may be placed in

a network. Each type of controller has a cost (dollar), a number of physical

ports available, a maximum number of requests it can handle per second and

the number of controllers available for each type.

• The maximum link setup latency allowed for switch to controller communica-

tions.

3.2.2 Problem Formulation

This section formulates the binary integer problem. A network topology is provided

by an undirected graph G = (S,E) where S is a set of switches and E is a set of

edges. The following notation is composed of sets, decision variables and constraints:

Sets

• S, a set of switches that are present in the network, S = {s1, s2, s3 . . . }

– σs, the number of packets that do not match on the switch (s ∈ S) table

and that must be sent to the future connected controller.

• C, a set of controller types that can be installed, C = {c1, c2, c3 . . . }.

– αc is the number of ports available for the controller type c ∈ C.

– µc is the processing power in packets per second for a controller of type

c ∈ C.

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 22

– κc is the price in dollars of the controller type c ∈ C.

– ϕc is the number of controllers available of type c ∈ C.

• L, a set of possible link types that can be used to connect controllers and

switches, L = {l1, l2, l3 . . . }.

– ωl is the bandwidth in Mbps of link type l ∈ L.

– φl is the price in dollars per meter of link type l ∈ L.

• P , the set of possible locations to install the controllers.

Constants

• β, is the packet size for each packet that is sent to the controller in bytes.

• γ, is the maximum delay allowed in the network for flow-setup.

• δ, is the average time in milliseconds taken to process a packet by any controller.

• t, is the speed of light.

Functions

• dist(a,b) is a function that calculates the distance between point a and point

b. The value of a and b are in the form a = (x, y) and b = (x, y).

• f(a) is a function where a is a value in Mbps or Gbps and that converts to

bytes per second.

• g(a,b) is a function that takes the input parameter a as the number of packets

per second, b the packet length in bytes and converts it to bytes per second.

• Prop(...) is the propagation delay (see Section 3.2.2).

• Tran(...) is the transmission delay (see Section 3.2.2).

• Proc(...) is the processing delay (see Section 3.2.2).

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 23

Decision Variables

• xcp =

1, if controller of type c ∈ C is installed on location p ∈ P ;

0, otherwise.

• vlsp =

1, if link of type l ∈ L and switch s ∈ S is installed on location p ∈ P ;

0, otherwise.

• zlpq =

1, if location p ∈ P is connected to location q ∈ P of link type l ∈ L;

0, otherwise.

Objective Function

The objective function of the planning model is to minimize the total cost of placing

controllers and links. The total cost of the optimization model is the cost of placing

the controllers, the cost of linking the controllers to the switches and the cost of linking

controllers together. The cost of placing controllers is Cc(x), the cost of placing links

between controllers and switches is Cl(v) and the cost of linking controllers together is

Ct(z). The variable x is a matrix that holds boolean values for each controller of type

c ∈ C that is placed at possible location p ∈ P . The variable v is a matrix that holds

the boolean values for each link type l ∈ L where each possible controller location

p ∈ P is connected to a switch s ∈ S. Finally, z is also a matrix that holds boolean

values of link type l ∈ L that connects a controller p ∈ P and another controller

q ∈ P .

Cc(x) =
∑
c∈C

κc
∑
p∈P

xcp (3.1)

Cl(v) =
∑
l∈L

φl
∑
s∈S

∑
p∈P

dist(s, p)vlsp (3.2)

Ct(z) =
∑
l∈L

φl
∑
q∈P

∑
p∈P
q<p

dist(q, p)zlpq (3.3)

The planning problem can be modelled with the following function:

Minimize (Cc(x) + Cl(v) + Ct(z))

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 24

Formulation Constrains

• Enforce uniqueness constraint for controllers.

∑
c∈C

xcp ≤ 1 (p ∈ P) (3.4)

• Make sure that the number of connected switches and controllers to one specific

controller is smaller than the number of ports on the controller.

∑
q∈P

∑
l∈L

(
zlpq + zlqp

)
+
∑
s∈S

∑
l∈L

vlsp ≤
∑
c∈C

αcxcp (p ∈ P) (3.5)

• Make sure that exactly one link (of any type l ∈ L) is installed between a given

switch and the controllers.

∑
l∈L

∑
p∈P

vlsp = 1 (s ∈ S) (3.6)

• Make sure that the number of packets each switch sends can be processed by

the controller.

∑
l∈L

∑
s∈S

σsvlsp ≤
∑
c∈C

µcxcp (p ∈ P) (3.7)

• Make sure that the inventory of each controller is not exceeded.

∑
p∈P

xcp ≤ ϕc (c ∈ C) (3.8)

• Make sure that the link that is chosen between the controller and the switch

can handle the bandwidth needed by the switch.

g (σs, β) ≤
∑
l∈L

f
(
ωl
)
vlsp (s ∈ S, p ∈ P) (3.9)

• Keep the round trip flow-setup latencies for unmatched flows in each of the

switches below or equal to γ.

2 Tran(v) +
∑
c∈C

(2 Prop(x, v) + Proc(x)) ≤ γ (3.10)

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 25

• Connect the controllers together using the full mesh topology.

∑
c∈C

xcq +
∑
c∈C

xcp ≤
∑
l∈L

zlpq + 1 (q < p, q ∈ P, p ∈ P) (3.11)

• Ensure that valid values are assigned to the variables representing controllers

and links.

xcp ∈ {0, 1} (c ∈ C, p ∈ P) (3.12)

vlsp ∈ {0, 1} (l ∈ L, s ∈ S, p ∈ P) (3.13)

Inner-Controller Topology Connectivity

Controllers can be physically connected using various topologies such as a tree, ring,

and full mesh. In this thesis, the full mesh topology is used to connect controllers

together. The authors in [44] provide the formulations and mathematical proofs for

each of the topologies.

To connect any of the topologies, there must be a decision variable that must be

added to the model. This decision variable makes it possible for our objective to

include the extra links that are needed between controllers. The variable is zlpq, which

indicates if controller placement location p is connected to another controller location

q with a link type l. Equation 3.11 forms a constraint that connects controllers

together in full mesh topology.

The equation has a restriction that the index of the controller installed at location

p must always be greater than the index of the controller installed at location q. This

ensures that only one directional link is placed from controller p to controller q. The

topology equation only places one way connectivity (p to q). In Equation 3.5, when

we count the number of ports used for the controllers, it is necessary to also include

the topology link in the opposite direction (q to p). The reason behind this is because

only one link is placed between controllers and it is either zlpq or zlqp and we do not

know which variable is set.Therefore, the addition of zlpq and zlqp is needed to make

sure a link between any two controllers is always counted.

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 26

Flow-Setup Latencies

Flow setup is initiated on a switch only if a flow is not found on the switch table and

that switch forwards the flow to the controller to determine where to send the flow.

Depending on the configuration of the OpenFlow, either the whole packet will be sent

or β amount of bytes of the packet is sent to a controller. This thesis works under

the assumption that only β amount of bytes is sent. The reasoning behind this is

that there is no need to send full 1500 packet bytes, since that would result in a lot of

overhead. The latencies for flow setup are calculated using the propagation, controller

processing and transmission delays. We believe that the queuing delay should also

be added to form a full end to end delay calculation. Adding queuing mechanisms is

out of the scope of this thesis.

Propagation is the time taken to transmit a signal from a source to a destination.

This depends on the medium used. Propagation is calculated as distance
propagation speed

. De-

pending on the medium that is used, the propagation speed varies. The propagation

speed of wireless communications is the speed of light. For copper wires, the speed

varies from 0.59t to 0.77t. In the model, we use 0.59t for the speed of copper wire.

Controller Processing is the time taken to process the request in a controller and

to make a decision of what should be done with the new flow. Maybe a new rule would

have to be installed back into the switch. This involves the time taken to run the

algorithm that generates the rules. These times depend upon the processing capacity

of the controller. The processing of each packet is assumed to take δ milliseconds.

Transmission delay is the time taken for a process to send the information to the

wire. This includes the time taken at each layer of the TCP/IP down until the bit

level layer. This depends on the link speed that is used and the packet size that is to

be sent to the controller. The formula to calculate transmission is packet size (bytes)

link speed (bytes/sec)
.

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 27

Figure 3.1: The different delays that are calculated in flow setup latency.

Figure 3.1 shows the delays that need to be included into the calculation of flow-

setup latency. Each of the delays can be calculated using the following formulas:

Propagation Delay - Prop(x, v):(
dist(s, p)

0.59t

)
xcp (3.14)

Transmission Delay - Tran(v): (
β

ωl

)
vlsp (3.15)

Processing Delay - Proc(x):

(δ)xcp (3.16)

The planning model presented in this section only works when no controllers are

already installed. This is often referred to as green field deployment. However, in

most situations, an existing infrastructure will already be in place. As a result, it is

important to consider existing equipment that is already installed into the planning

process. The next section will introduce an expansion model that is used to alter,

if necessary, existing solutions. In this model, new decision variables, cost variables,

constrains and cost function are presented.

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 28

3.3 Expansion Model

In the case if information technology had no limitations on its resources or an unlim-

ited budget was provided to build a large network, it is possible that a large enough

network could be built and it would not require any changes. However, current net-

works have limitations in resources or budgets that make it an ongoing effort to

maintain good services at the lowest possible price. This section will introduce an

expansion model for placing controllers in an SDN network. In fact, the expansion

model is a generalization of the planning model discussed in the previous section. As

a result, this new model can be used to plan a brand new SDN network or expand an

existing network. The first section introduces the problem with the changed objective

and new constraints. The second section formulates the mathematical model.

3.3.1 Known Information

The expansion model also needs all the information that was needed by the placement

model as mentioned in Section 3.2.1. In addition, the following information is also

needed:

• The existing SDN topology. This includes the location and the type of con-

trollers that are installed as well as the topology (links) between the various

network elements.

• The cost of removing an existing link between switches and controllers.

• The cost of removing an existing link between controllers.

• The cost of reallocating controllers in the network.

3.3.2 Problem Formulation

In this model, we will be introducing a new cost function with new cost variables and

decision variables.

Sets

In addition to the sets mentioned in the planning phase (see Section 3.2.2), the

following are added:

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 29

• κ̄c is the cost in dollars to remove a controller of type c ∈ C.

• φ̄l is the cost in dollars to remove a link per meter of link type l ∈ L.

Decision Variables

• x̄cp =

1, if controller of type c ∈ C is already installed in location p ∈ P ;

0, otherwise.

• v̄lsp =

1, if link of type l ∈ L and switch s ∈ S is already installed on location p ∈ P ;

0, otherwise.

• z̄lpq =

1, if location p ∈ P is already installed to location q ∈ P of link type l ∈ L;

0, otherwise.

• Rvlsp =

1, if existing installation link l ∈ L is removed from s ∈ S and p ∈ P ;

0, otherwise.

• Kvlsp =

1, if a new link l ∈ L is connected from switch s ∈ S and placement p ∈ P ;

0, otherwise.

• Rzlpq =

1, if existing toplology link l ∈ L is removed from p ∈ P and q ∈ P ;

0, otherwise.

• Kzlpq =

1, if a new link l ∈ L is connects installed controllers p ∈ P and q ∈ P ;

0, otherwise.

• Rxcp =

1, if controller c ∈ C is removed from location p ∈ P ;

0, otherwise.

• Kxc = is the number of controllers of type c ∈ C that will be installed.

Objective Function

Depending on the goal, the model will expand an existing placement problem or

perform placements for the first time. The objective of the function is to minimize

the cost of placing controllers on a network. The functions that minimize the cost are:

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 30

C ′c(x) for placing controllers, C ′l(v) for connecting controllers and switches together,

and C ′t(z) for connecting new or installed controllers together.

C ′c(x) =
∑
c∈C

(
κc (Kxc) + κ̄c

(∑
p∈P

Rxcp

))
(3.17)

C ′l(v) =
∑
l∈L

(
φl

(∑
s∈S

∑
p∈P

dist(s, p)(Kvlsp)

)
+ φ̄l

(∑
s∈S

∑
p∈P

dist(s, p)(Rvlsp)

))
(3.18)

C ′t(z) =
∑
l∈L

φl

∑
q∈P

∑
p∈P
q<p

dist(q, p)Kzlpq

+ φ̄l

∑
q∈P

∑
p∈P
q<p

dist(q, p)Rzlpq

 (3.19)

The expansion problem can be modelled with the following function:

Minimize (C ′c(x) + C ′l(v) + C ′t(z))

Formulation Constrains

Based on the information from above, the following constrains are needed to formulate

the expansion model:

• Planning or reallocating same type of controllers:∑
p∈P

xcp −Kxc ≤
∑
p∈P

x̄cp (c ∈ C) (3.20)

• Removing an existing controller:

Rxcp + xcp ≥ x̄cp (c ∈ C, p ∈ P) (3.21)

• Planning a link between the switch and controller.

vlsp −Kvlsp ≤ v̄lsp (l ∈ L, s ∈ S, p ∈ P) (3.22)

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 31

• Removing an existing link between the switch and controller.

Rvlsp + vlsp ≥ v̄lsp (l ∈ L, s ∈ S, p ∈ P) (3.23)

• Planning a link between controllers p and q.

zlpq −Kzlpq ≤ z̄lpq (q 6= p, l ∈ L, q ∈ P, p ∈ P) (3.24)

• Removing an existing link between controllers p and q.

Rzlpq + zlpq ≥ z̄lpq (q 6= p, l ∈ L, q ∈ P, p ∈ P) (3.25)

• Integrity constraints for Kxc.

Kxc ≥ 0 (c ∈ C) (3.26)

• Integrity constraint for Rxcp.

Rxcp ≥ 0 (c ∈ C, p ∈ P) (3.27)

• Integrity constraint for Kvlsp.

Kvlsp ≥ 0 (l ∈ L, s ∈ S, p ∈ P) (3.28)

• Integrity constraint for Rvlsp.

Rvlsp ≥ 0 (l ∈ L, s ∈ S, p ∈ P) (3.29)

• Integrity constraint for Kzlpq.

Kzlpq ≥ 0 (q 6= p, l ∈ L, q ∈ P, p ∈ P) (3.30)

• Integrity constraint for Rzlpq.

Rzlpq ≥ 0 (q 6= p, l ∈ L, q ∈ P, p ∈ P) (3.31)

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 32

3.3.3 Logical Constraints

The logical constraints used in the problem formulation (equations 3.20 to 3.25) allow

the model for choosing between three better options when optimizing for the objective

function. They take the form x + a ≥ z or x− b ≤ z, where x, a, b and z are binary

variables. Variables a and b are included in the cost functions such as min(P1a+P2b)

where P1 and P2 are costs (dollars). The goal is to select either variable a or b, or to

not select one at all.

In the case of x + a ≥ z, which is the exclusivity constraint, either x or a can be

set to 1 when z is 1. This is because 1 + 0 ≥ 1 and 0 + 1 ≥ 1 hold. If a is set to

1, then price P1 is added to the objective. If a is not set then the constraint has no

effect on the objective function. As for the constraint x − b ≤ z, when z is set to 1,

only x can be set to 1 and b will always be forced to 0. If z is set to 1, both x and

b are either set to 1 or 0. We can see that if z is set to 1, then b is always 0, and a

may be 1. However, when z is set to 0, then a is always 0.

Equations 3.21, 3.23 and 3.25 check if a link that already exists can still be in-

cluded. If for instance the variable vlsp is forced to be 0 by a constraint from the

planning model, then the remove variable is set to 1 (Rvlsp). The cost of removing

such a link is included in the cost calculation of the optimal solution. If a link does

not exist already, then the cost variable is not selected, thus not changing the price

of the solution (the constraint is ignored).

The purpose of Equation 3.22 and 3.24 is to plan links. There are general con-

straints that consider if a link already exists or not. If a link already exists then its

price is not added to the total cost of the solution. This is because the right hand

side of the equations will be set to 1 and only the left most variable (vlsp) of the left

side of the inequality can be set to 1. If a link does not exist, then both variables on

the left hand side of the inequality are set to 1. This ensures that the price of the

new link should be included in the calculations.

3.4 Concluding Remarks

In this chapter, we have formulated two models for placing controllers in a network.

Depending on the goal, the first model is used to decide new placement locations for

controllers and connect the network whereas the second model is a generalization of

the planning problem and can be used to plan or expand a network. In the next

CHAPTER 3. OPTIMAL PLACEMENT OF CONTROLLERS IN SDN 33

chapter, we show how the models perform under different conditions and we analyze

the results.

Chapter 4

Results and Analysis for the Controller

Placement

In this chapter, we show the collected results for the purpose of understanding the

performance and limits of the models. First, the placement problem of controllers is

solved with different topologies. Then, the expansion of already placed controllers

is determined and results are given. The chapter starts with simple examples of the

models and then continues by examining more complex optimized scenarios.

4.1 Placement Problem: Results and Analysis

Placement of controllers in a new network is not a simple task. One difficult aspect

of it is the gathering of information about the topology that is to be placed using the

planning model. The information (input parameters to the model) is essential to the

placement of controllers. For example, the location of switches and possible controller

locations needs to be known, as well as the inventory information that is available to

place the controllers. Subsection 4.1.2 goes into detail by showing a simple example

of the planning problem. We begin with the input parameters and then go into detail

about each of the constrains related to the example that is solved.

4.1.1 Methodology

In our implementation, there are many steps that we have to take in order to find

an optimal solution. All the steps are summarized in Figure 4.1. First, the topology

is generated from the input such as those provided in Tables 4.1, 4.2 and 4.3. This

forms the set of switches (S) and the set of possible controller placement locations (P).

34

CHAPTER 4. RESULTS AND ANALYSIS 35

Next, the linear problem model file is generated using the input information gathered

so far and including the information that is in Table 4.3. At this time, all the informa-

tion is available for the model to be generated. Using Python programming language,

the model is generated. The objective functions and constraints are expanded using

software and are saved to a linear program model file (Generate-Model()). A solver

optimizes the problem (Cplex-Optimize()) using the linear program as its input.

Once the solver finds an optimal solution, the result is saved in a simple text file. Fi-

nally, the result file is read and interpreted and a plot is generated (Analyze-Plot()).

Figure 4.1: Steps to find the optimal solution for placing controllers on a network.

The location input to the model is generated randomly for every location variable.

The placement and the expansion examples locations are generated within 100 me-

ters by 100 meters by randomly generating the values for the switches and possible

controllers locations. A location of a switch or possible location is a point form (x,y)

in a graph. A random integer between 0 and 100 (exclusive) is assigned to x and y.

For the result analysis input information, an area of 1000 meters by 1000 meters is

used instead. With a larger area, the result graphs display better because we generate

many switches and controller placement locations. Each switch that sends packets to

its future connected controller (σs) is assigned a random integer value between 0 and

999 (exclusive).

The model is generated using the command line scripts:

python cli.py --in=./ input --out =./ output --cplex --settings=

simulation.txt --confsection=placement1

The optimization input information is stored in configuration files and the location

of the configuration files is specified using the --in parameter. The specific configu-

ration file is set with the --settings. Since each configuration file contains multiple

topologies a topology is selected by specifying the --confsection instruction. The

--cplex instruction tells the script to generate the CPLEX linear program model.

After CPLEX solves the problems, we analyze the model and graph it using the same

command as above but instead of instructing the script to generate the model, we

CHAPTER 4. RESULTS AND ANALYSIS 36

instruct the script to plot and analyze the model by replacing the argument --cplex

to --plot (see Appendix C). Since there will be many scenarios to optimize, we will

schedule our optimizations on a cluster of computers using the Sun Grid System.

Once the scheduler runs, we follow the same steps mentioned earlier to optimize each

problem. The following are files that are generated by end of each problem:

• cpp com file run planning.com, which is a bash file and is what the problem

is scheduled with in the cluster,

• cpp problem run planning.lp, which is the linear program model file that is

read and optimized by CPLEX,

• cpp solution run planning.txt, which is the output to the optimization, and

• report run planning img.pdf is the plot of the solution.

To graph the solution, Matplotlib library is used with Python. The graph itself

automatically determines the minimum and maximum x and y coordinates that are

used as the graph dimensions. Set S and P are initially plotted. Once the solution

is found, the controllers are plotted and the links that have been selected between

controller and switches. Furthermore, if multiple controllers exist, then the links

between controllers are also plotted.

4.1.2 Detailed Example

The simple example in this section shows the understanding of the planning model

before the optimization results are analyzed. In this example, a network composed

of 7 switches is solved by finding the optimal location(s) of controller(s) placement

while considering the controller processing, the bandwidth between switches and con-

trollers, flow setup latency, link and controller inventory and controller to controller

connectivity. Once the result is obtained, it will be analyzed and the final conclusion

is made by showing the final cost and the optimal placement variables.

The placement model in the first section of Chapter 3 is used with the inputs

shown in Table 4.1 and Table 4.2.

In this simple scenario, we have two types of controllers as shown in Table 4.1. The

first type is the cheapest and costs $10, comes with five physical ports and can process

CHAPTER 4. RESULTS AND ANALYSIS 37

Table 4.1: The type of controllers avaliable.

Type 1 Type 2

Cost (κc) $10 $50

Ports (αc) 4 8

Processing (µc) 100 300

Controllers (ϕc) 2 1

Table 4.2: The type of links avaliable.

Type 1 Type 2

Cost/meter (φl) $0.05 $1.99

Bandwidth (ωl) 1 Mbps 10 Mbps

100 packets per second. In the inventory, there exist only two of these controllers. The

second type costs $50, comes with eight physical ports and can process 300 packets

per second. There is only one controller available in the inventory for type two. In

total, the three controllers cost $70, have 18 ports and can process 500 packets per

second.

The link information is shown in Table 4.2. Two link types exist with bandwidth

of 1 Mbps and 10 Mbps, respectively. The price of these links is shown in dollars

per meter. The first link costs $0.05 per meter and the second costs $1.99 per meter.

There are no restrictions on how many meters of each type of link are used and it is

assumed that unlimited cabling is available.

For the simple example, the initial topology includes seven switches and five pos-

sible placement locations for the controllers. We assume each switch sends a certain

number of packets per second (σs) to the controller to determine what to do with the

unknown packets. Figure 4.2 shows the location of all the switches that are already

installed in the network (marked with blue dots) and the potential locations to install

the controllers (marked with × symbol). The number on top of the switches is the

CHAPTER 4. RESULTS AND ANALYSIS 38

Table 4.3: Toplology and optimization input parameters for the example.

Maximum Latency 250 ms

Packet Size 1,500 Bytes

CPLEX Restrictions Single Thread Run

Simulation Area 100x100 meters

Link Available Unlimited

Controllers Available 3

Number of Switches 7 (random)

Maximum Placements 5 (random)

Switch to Controller (σs) [290, 11, 12, 16, 13, 34, 15]

Maximum Optimization Duration 10,8000 Seconds

number of packets that the switch sends to the future connected controller (σs). The

area that is used in this scenario is 10,000 meters squared.

By visual observation of Figure 4.2, we can tell that switches S2 and S5 are close to

placement location P4. Also, the distance between P4 and S6 is 34 meters whereas the

distance between P3 and S6 is 41 meters. Therefore, it is very likely that S6 connects

to P4. For switches S1 and S4, controller placement location P2 is the closest. As

for the last two switches, S3 and S7, the closest controller placement location may

be P5. The possible placement location P3 and P1 may not have any controllers. To

better understand the constraints of the planning model presented in this section,

the example is applied to each of the constrains mentioned in the planning model of

Chapter 3.

Controller Processing Capacity

Equation 3.7 states that the incoming requests from the switches must be less than

the processing capacity of the controller. For instance, switch S1 sends 290 packets

per second to the future connected controller. The only controller that can process

this many requests is the controller of type two that has a capacity of 300 packets

per second. Therefore, the type two controller is assigned on location P2 and S1 is

CHAPTER 4. RESULTS AND ANALYSIS 39

0 20 40 60 80
Distance (meters)

0

20

40

60

80
D

is
ta

n
ce

 (
m

e
te

rs
)

S1 :290

S2 :11

S3 :12

S4 :16

S5 :13

S6 :34

S7 :15

P1

P2

P3

P4

P5

7 Switches, 5 Max Controllers at $0

Switches
Switch

Controllers
Possible Controller

Controllers
Possible Controller

Figure 4.2: The location of the switches and the potential controller locations for
the placement example.

assigned to it. The variables for the controller placement (xcp) and link between switch

and controller (vlsp) are set. Variable x22 = 1 and v?12 = 1. Note that the question

mark indicates that the link type is currently unknown. The installed controller can

process any other switch that sends at most ten packets per second. However, all the

other switches have more than 11 packets per second to send to the controller.

The total processing that is needed for the network by the switches is 391 packets

per second. Since S1 is connected to a controller already, the remaining processing

capacity is 101 packets per second for the whole network. That is low enough to be

covered by a single type two controller. However, other constraints may fail that will

force more controllers to be placed in the network.

CHAPTER 4. RESULTS AND ANALYSIS 40

Controller Port Availability

Equation 3.5 checks for the port availability when connecting switches to installed

locations of controllers and other controllers that connect to form the full mesh topol-

ogy. We know that a controller is already placed in location P1 and this means that

only one port is used to connect a switch. This constraint passes for the installed con-

troller on P1 because seven ports remain available. One reason why there is more than

one controller installed is because we have more switches compared to the available

number of ports on the type two controller.

One Link Connecting Controller and Switches

Equation 3.6 ensures that every switch is connected to at most one controller. So far,

only switch S1 is connected. Since we know that P2 can only process one switch, others

remain not allocated to a controller. Therefore, a controller is installed in location

P4. Switches 5, 6, and 2 can be served by this controller because their distance is

the shortest compared to other possible controller placements. This sets the variable

xcp to x14 = 1 because a controller of type one is sufficient to handle these switches.

Similarly, link placement sets variables vlsp to v?54 = 1, v?64 = 1, and v?24 = 1. The

question mark indicates that the link type is not known. Connecting these three

switches to the controller P4 uses three ports on the controller. In addition, one port

on each controller is used to connect P4 to P2. In total, four ports are currently used.

Switches 3, 4, and 7 are not connected yet. Equation 3.5 only allows one more

switch to be connected to the controller installed at location P4 because there is only

one physical port left. This means that a new controller must be installed somewhere

close to the two switches that are disconnected. A new controller is placed and the

optimal placement is on P5. Any other available possible controller location would

make the cost of connecting switches S3 and S7 more expensive due to the fact that

the distance increases between the switch and controller. This is not always the case

because controller to controller connectivity would also increase the cost function if

P5 was too far away. A controller is installed at location P5 for switches S3 and S7 to

be connected. Since these switches only require a controller with processing capacity

of 27 packets per second, controller of type one is picked to minimize the cost. The

variables that are set include: xcp to x15 = 1 and v?35 = 1 and v?75 = 1 for vlsp. This

leaves switch S4 not connected anywhere. The distance to P1 is a lot closer than P5

but the processing power of the controller of type two in P1 is under limit of what

CHAPTER 4. RESULTS AND ANALYSIS 41

S4 requires (10 vs 16). Therefore, S4 must be connected to P5. The variable set for

connecting S4 to P5 is v?45 = 1.

Controller Inventory Limits

Equation 3.8 limits how many of each controller type can be installed. In the final

solution, the solver will make sure each controller type is not used more than the

number of controllers available as indicated in the controller input information in

Table 4.1. In this case, two controllers of type one and one controller of type two are

installed in the network.

Link Bandwidth Between Switch and Controller

Until now, we have only shown that links must exist between switch and controllers.

We could not specify what link is to be installed. To determine the correct link

type to use, a link must be able to transmit the packets that a switch sends to

the controller (see Equation 3.9). The function g(σs, β) determines the needed

bandwidth for a switch to communicate with a controller, where β is the packet size

in bytes. For this example, β is 1,500 bytes (see Table 4.3). For the switch S1, 290

packets per second are sent to the controller (σ1). The total link bandwidth required

for switch S1 is calculated as follow.

g(σ1, 150) = 290 ∗ 1500 = 435, 000 bytes per second.

Links from Table 4.2 are in Mbps and need to be converted to bytes per second.

Function f(ωl) converts between the two units for link type (l ∈ L). Link types one

and two are converted as follows.

f(ω1) = f(1Mbit) =
1

8
∗ 1, 000, 000 = 125, 000 bytes per second, and

f(ω2) = f(10Mbit) =
10

8
∗ 1, 000, 000 = 1, 250, 000 bytes per second.

The bandwidth that the packets from S1 generate to the installed controller (P1)

CHAPTER 4. RESULTS AND ANALYSIS 42

cannot be satisfied by a link of type one because the link bandwidth is lower (435,000

bytes per second vs 125,000 bytes per second). Therefore, the link assignment (vlsp)

from S1 to P1 is of link type two (v212). The rest of the connections between the

installed controllers and the switches can be handled by links of type one because the

next highest outgoing packet rate from the switches is 34 packets per second (47,600

bytes per second).

Controller Connectivity

Equation 3.11 ensures that the controllers are connected together. The equation

only looks at possible placement locations where controllers have been installed

(xcp). If the equation is expanded, it starts from the lowest index and moves on

to connect controllers that have a lower index then its own. At possible controller

location one (P1), a controller is not installed and since this is the first controller,

nothing happens. At the second location (P2), there exists a controller but it is the

only installed controller. So far, there is no work to do because there is nothing

to connect P2 to. The next installed controller is on possible location five (P5).

Connections to the previous installed controllers are made. This means that it

connects P4 to P2 and sets the variable z?pq to z?42. The next installed controller in

order is P5 and this controller is connected with installed controllers on locations 4

and 2. Therefore, the next variables for topology connectivity are z?52 and z?54. The

fact that we only consider minimal traffic between controllers, the lowest link type is

used. The variables that are set to connect the controllers are zl42, z
1
52 and z154.

In summary, the variables that are selected are:

• Controller Placement (xcp): x22, x15, x14

• Switch and Controller Connectivity (vlsp): v
2
12, v

1
75, v

1
54, v

1
64, v

1
24, v

1
35, v

1
45

• Full Mesh Controller Topology (zlpq): z
1
42, z

1
52, z

1
54

Cost of the Solution

The total cost to the above scenario is the cost for each of variables that have been

chosen from xcp, v
l
sp and zlpq. All the costs added together come to $114 as shown in

Table 4.4. The selected variables are marked with a box on the table. Since this is a

CHAPTER 4. RESULTS AND ANALYSIS 43

small example, we are able to show partial cost function to illustrate the selection of

the variables that make up the cost.

CHAPTER 4. RESULTS AND ANALYSIS 44

Table 4.4: The cost formulation of the planning example.

Controllers(xcp) Links(vlsp) Topology(zlpq)

$10x11 $4.397v111 $4.137z121

$10x12 $0.743v112 $1.820z131

$10x13 $3.104v113 $3.265z141

$10x14 $3.250v114 $2.171z151

$10x15 $2.230v115 $2.631z132

$50x21 $3.621v121 $2.550z142

$50x22 $3.053v122 $2.062z152

$50x23 $2.000v123 $1.530z143

$50x24 $0.583v124 $1.345z153

$50x25 $3.068v125 $2.500z154

$3.662v131 $164.642z221

$2.151v132 $72.437z231

$3.093v133 $129.961z241

$3.953v134 $86.399z251

$1.768v135 $104.697z232

...4 Observations cut off...

$1.961v145 $99.500z254

$3.869v151

$2.126v152

$2.059v153

$0.762v154

...5 Observations cut off...

$1.700v164

...5 Observations cut off...

$1.262v175

$174.984v211

$29.583v212

$123.524v213

...31 Observations cut off...

$50.225v275

Total Cost $114

CHAPTER 4. RESULTS AND ANALYSIS 45

CPLEX Optimization

As the problem size increases, it becomes very difficult (not to say impossible) to

solve the problems manually and that is why a solver is needed. The optimization for

this scenario is run on IBM’s ILOG CPLEX Optimizer version 12.5. The optimizer

runs on a single thread. The process that is shown in Figure 4.1 is run on a computer

that has the solver installed.

0 20 40 60 80
Distance (meters)

0

20

40

60

80

D
is

ta
n
ce

 (
m

e
te

rs
)

S1 :290

S2 :11

S3 :12

S4 :16

S5 :13

S6 :34

S7 :15

7 Switches, 5 Max Controllers at $114

Switches
Switch

Controllers
$10

$50

Possible Controller

Links
1 Mbps

10 Mbps

Figure 4.3: Optimal solution found by CPLEX for the planning problem example.

We are already aware of the solution to this problem but the optimizer will validate

the above solution. Furthermore, the optimizer suggests the time taken to get the

solution, which is an important information when the problem size increases. The

solution is plotted and shown in Figure 4.3. The links connecting the switches to the

controllers are shown with either solid blue or green colour. A blue colour indicates

the cost for the links of type one (1 Mbps). The green colour is the cost for the links

of type two (10 Mbps). Similarly, the controller placements are coloured and are

placed on top of the possible placement markers. The yellow colour indicates the first

controller type and the red colour indicates the second controller type. As we can see,

the result of the optimization matches the solution found earlier. The links between

controllers are always the same type of colour, since we assume that it takes minimal

CHAPTER 4. RESULTS AND ANALYSIS 46

bandwidth to have controllers communicate with each other. Because the goal of

the planning model is to place controllers on a network, traffic between controllers is

not considered and in our model, the cheapest link speed should be good enough for

connecting controllers together.

4.1.3 Results for Small to Large Input Sizes

The input to the model is important because the result is a direct reflection of the

input. Using the placement problem, we are interested in what happens to our re-

sults when the number of switches and the number of possible placement controllers

increases. Generally, as the input increases so should the cost to the solutions and

the time taken to find the solution. This section will present and analyze the different

results given by the planning model.

The optimization should be measured using a variety of methods. One way to

measure it is to keep track of the cost for different ranges of solutions. Another

method is to keep track of the time taken by the solver to find an optimal solution.

The cost of the solution should be increasing as the number of switches increases.

This is because the input increase means more controllers may be placed and all

those switches must be connected. The number of switches in the topology is directly

related to the number of links placed by the solver between switches and controllers.

Since every switch must be connected to a controller, it increases the cost of the

solution.

The input for the model is very important and in this section, we show what the

input for controllers may be. Today many controllers exist and have been tested in

real scenarios. Each of these controllers has their own specifications. The specification

of each controller type depends on the hardware used and the implementation of the

programming language. Table 4.5 shows four types of controllers that are used by

the solver.

The specification of the link types that connect controllers and switches together

is easy to determine. On any networking sales website, one can determine the cost

per meter and the types of links that are available. Currently, a meter of 100 Mbps

ethernet is about $0.25 and $0.63 for a meter of 1 Gbps ethernet. Furthermore, over

10 Gbps fiber optic cable is on average $29 per meter. Table 4.6 shows the link input

CHAPTER 4. RESULTS AND ANALYSIS 47

Table 4.5: The type of controllers that are used as input to the planning model.

Type 1 Type 2 Type 3 Type 4

Cost (κc) $1,200 $2,500 $6,500 $12,000

Ports (αc) 8 32 64 128

Processing (µc) 2,500 4,000 8,000 15,000

Controllers (ϕc) 20 15 10 6

Table 4.6: The type of links that are used as input to the planning model.

Type 1 Type 2 Type 3

Cost/meter (φl) $0.25 $0.63 $29

Bandwidth (ωl) 10 Mbps 1 Gbps 10 Gbps

available for the optimization.

The overall input parameters for the optimization are listed in Table 4.7. The area

in which the switches and the possible controller locations are generated is 1000 meters

by 1000 meters. The reason for the larger area size is because at some point, 200

switches will be generated and a smaller area would not display well. The optimizer

is limited to run on a single thread and a maximum of 30 hours of processing time

for each scenario. All other parameters are left to their default settings.

Locations of the switches and possible placements are generated randomly for each

of the locations within the allowed area. Two values generated makes a single point

of (x, y) to be part of the input. The packets ratio to the controllers from each switch

(σs) is also generated randomly (see Table 4.7). At random, a set of 10, 20, 30, 40, 50,

75, 100, 150, and 200 switches are generated that should explain what happens to the

solution as the number of switches increases. For each of the number of switches in

the set, changing the number of controller placement locations shows if it is possible

to improve the solution by considering different placement locations. For each set S,

a new set of maximum placement controllers is generated at random of size 5, 10, 15,

CHAPTER 4. RESULTS AND ANALYSIS 48

Table 4.7: The input parameters for the planning problem.

Maximum Latency 250 ms

Packet Size 150 Bytes

CPLEX Restrictions Single Thread Run

Simulation Area 1,000x1,000 meters

Link Available Unlimited

Controllers Available 51

Maximum Optimization Duration 108,000 Seconds

Switch to Controller (σs) Random Integer (100,999)

and 20 possible controller placement locations. This would mean that 20 switches

are optimized using 5 potential locations for the controllers, then with 10 potential

controller locations and so on.

Since the number of switches ranges from 10 to 200, when we consider 5 possi-

ble controller locations, it is not possible to have feasible solutions to our problems

because the processing of controllers is low. For example, if each switch sends 900

packets per second to their future connected controller, it would mean that a network

of 200 switches would require 180,000 packets to be traversing the network. The

processing power of switches in Table 4.5 for maximum of 5 switches can only handle

75,000 packets per second. This forces us to use a different controller table that has

high processing of packets ratio. Table 4.8 shows the controller information that is

used when optimizing when P is 5 and S is 10, 20, 30, 40, 50, 75, 100, 150, and 200.

In total there are 36 different problems that must be optimized. Since results can

vary between two problems of the same size, we are taking the average over 4 differ-

ent instances resulting in solving 144 different optimization problems. The smallest

problem size contains 10 switches and 5 controller placement locations. The last

and largest problem size is when there are 200 switches and 20 controller placement

locations.

The aggregated results are shown in Table 4.9 (see Appendix A for all individual

results). The first column is the problem number. The second and third columns

Table 4.8: The type of controllers that are used as input when there are a maximum
of five possible controller locations for the planning model.

Type 1 Type 2 Type 3 Type 4

Cost (κc) $1,200 $2,500 $6,500 $12,000

Ports (αc) 8 32 64 128

Processing (µc) 11,500 31,000 61,000 110,000

Controllers (ϕc) 20 15 10 6

are the number of switches and number of maximum possible placement locations

of controllers. Column labeled |P ′| is the average number of controllers that have

been installed by the solver. Column denoted |L′| is the average number of links

installed for the whole network. The average number of controllers installed and the

average number of links in the network are rounded up because two controllers and

a half cannot be installed. If more than one controller exists, then there are a total

of |L′| = |P ′|(|P ′|−1)
2

+ |S| links for each scenario. For example, problem 4 has three

controllers, meaning that 3(3−1)
2

links are required to connect controllers using a full

mesh topology. Then links to connect the switches to controllers are also required

for a total of 13 links as indicated in row four and column |L′|. The packets column

represents the total number of packets for the network. The last two columns labeled

Cost and CPU are the cost of the solution ($) and the time taken (seconds) by the

solver to find the optimal solution. It is important to note that problems 32 and 36

do not represent the optimal solution but rather the best solution found when the

time limit (set to 108,000 seconds) was reached. The problems that have at least one

instance that exceeds the time limit is shown in brackets. The column “Average”

marks which part of the table data are averaged over the four instances.

CHAPTER 4. RESULTS AND ANALYSIS 50

Table 4.9: Results obtained with CPLEX when |S| =
{10, 20,30, 40, 50,75, 100,150, 200} and |P | = {5, 10, 15, 20}. The results
show the average over 4 instances.

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

Averages

1 10 5 2 11 5,060 3,227 <1

2 10 10 3 13 5,783 4,243 1

3 10 15 3 12 5,019 3,841 3

4 10 20 3 13 5,169 4,086 6

5 20 5 1 20 11,010 4,558 <1

6 20 10 5 29 11,209 8,138 3

7 20 15 4 26 10,181 7,512 31

8 20 20 4 27 10,857 7,774 83

9 30 5 1 30 15,921 5,824 <1

10 30 10 5 41 16,391 12,747 18

11 30 15 6 45 17,335 13,138 155

12 30 20 6 42 16,734 12,727 3,087

13 40 5 3 43 21,943 8,326 <1

14 40 10 6 55 23,192 19,195 49

15 40 15 6 55 21,044 16,980 774

16 40 20 7 57 23,852 19,007 5,401

17 50 5 2 51 27,096 8,781 <1

18 50 10 6 66 27,938 23,802 66

19 50 15 7 69 27,554 22,808 4,284

20 50 20 7 71 27,285 22,040 1,146

21 75 5 3 78 41,773 12,992 <1

22 75 10 8 101 42,758 38,073 292

23 75 15 8 102 40,548 35,277 3,365

24 75 20 (8) (98) (40,994) (35,484) (58,657)

25 100 5 4 106 56,447 17,638 <1

26 100 10 9 133 55,348 49,489 498

27 100 15 11 151 55,206 48,214 14,666

28 100 20 11 156 54,241 47,172 18,206

29 150 5 3 153 84,221 26,803 <1

30 150 10 8 173 80,962 73,883 2,623

31 150 15 (12) (211) (81,141) (73,102) (46,219)

32 150 20 (12) (216) (82,105) (73,981) (108,000)

33 200 5 5 209 110,906 33,402 1

34 200 10 10 245 109,956 103,888 80

35 200 15 (12) (262) (109,908) (100,128) (38,475)

36 200 20 (11) (253) (105,541) (96,483) (108,000)

CHAPTER 4. RESULTS AND ANALYSIS 51

Problems two to four belong to a set of results that have different potential con-

troller placement locations but have the same number of switches. The time taken

for the solver to find the solutions for that set increases in a non-linear form. The

first problem takes less than 1 second and the last run for that set of switches takes

6 seconds. In general, as the input size (|S| and |P |) increases, the time taken to find

the optimal solution also increases because the model must consider more scenarios

before deciding where to place controllers and how to connect the controllers and

switches together. However, this is not always the case. For example, problem 20

takes less time to solve than problem 19 even though it has more potential locations

for the controllers. A reason why the optimizer may take less time for larger input

size rather than smaller input is because the optimizer uses the branch and bound

algorithm to try different combinations to find the optimal solution and heuristics

are used to shorten the combinational space by finding the solution to the relaxation

of the current node [45]. The time taken to find an optimal solution for problems

32 and 36 was interrupted for all instances because the maximum running time was

reached. This means that the cost for those problems may not be the optimal solution

as better solutions may have been found if more running time had been available.

The cost of the solutions starts with a high value because the controllers’ starting

price is $1,200. Since the first problem has placed two controllers, and if the controllers

are of type one, the total cost for only the controllers is $2,400 - in addition, about

$106 is the cost of connecting controllers and switches together. The results show that

the first four problems have costs between $3,227 and $4,243. These costs are close

to each other because each of the problems 2 to 4 have three controllers installed and

it also shows that switches may be placed far apart for the more expensive scenario.

Similarly, problems 5 to 8 have costs between $4,558 to $8,138. The reason why the

optimal costs are not close to each other is because the input is generated randomly

and different distances between switches and controllers may exist. Also, the result

for problem 5 uses a different controller input table that can process more packets

than the input for problems 6 to 8. These differences are small compared to the

differences noted in problems 29 and 32. The cheapest optimal solution is $26,803

and the most expensive is $73,981.

Until now, we have been comparing the cost of the optimal solutions for different

problem sizes but this does not explain the reliability of the results. Exploring the

reliability of the data can be done in various ways but one way is to find the confidence

CHAPTER 4. RESULTS AND ANALYSIS 52

interval. For our results, a confidence interval is stated as a percentage with a value

of 95%. The percentage represents the likelihood that another sample will fall into

the same interval. In Figure 4.4, the vertical segments along the graph show the

confidence interval. The points in the plot indicate the mean cost for each set of

switches grouped by the number of maximum possible controller locations (|P |). As

expected, the cost of solutions increases as the input size increases as shown in the

figure. However, the line when |P | is five shows that the maximum cost is about

$33,502 and this is why the line ends half way in the graph. Generally, the line when

|P | is five should be together with the other lines but the result show that the line is

far apart from our other results. This is much expected because the controller input

table for when |P | is five can process a lot more packets than for other |P | instances.

It means that less controller have to be placed in the network and resulting into a

cheaper overall price. The largest confidence interval is on problem 35 with ±$8789.

The results indicate that confidence bars are very narrow for this graph and it shows

that the optimal placement cost of new optimizations may lie within narrow intervals.

Therefore, the optimization cost reported by CPLEX is considered reliable.

When the error bars are wide, it indicates that the results are less reliable because

the range covers a wider set of values. This is shown in Figure 4.5. We can improve

the error bars by running more than four instances for each problem. Decreasing the

error bars is possible if we decrease the standard deviation since standard deviation

is related to the square root of the number of instances each problem is repeated.

Looking at the figure, when |P | is 20 and |S| is 100, the error bars are very wide. To

make the bars shorter, we need to make the standard deviation smaller by running

each problem more than 4 times. If we wish to decrease the standard deviation by

half, each problem would have to run 16 times. When |P | is 20 and |S| is 100, each

problem instance takes 16 hours to complete. This would mean that for 16 runs, it

would take 256 hours to complete all the 16 instances. The standard deviation for four

instances is 8,490 seconds and the confidence interval is ±27, 019 seconds. Assuming

the same mean is used, if we were to run the problem 16 times, the confidence interval

would decrease to ±9, 056 seconds (because standard deviation decreased by half).

This is 33% of the confidence interval when we compare it to the four instances from

our result.

Also, in Figure 4.5, we can see that the error bars are wide for |P | ≥ 15 and

CHAPTER 4. RESULTS AND ANALYSIS 53

●
● ●

● ●

●

●

●

●

0

25000

50000

75000

100000

10 20 30 40 50 75 100 125 150 175 200
of Switches

C
os

t(
$)

of Potential
Locations

● 5

10

15

20

Cost of Solutions vs Number of Switches

Figure 4.4: Cost of solutions colored against maximum number of controllers with
95% confidence interval.

|S| ≥ 50. We can improve the reliability of the result for problem 31 by running an

instance of the problem 16 times. Since the average time for that problem is about

13 hours (46,219 seconds), running it 16 times may take 205 hours (15 fold increase).

The results show that the total time taken to find optimal solutions for every problem

run four times is 19 days (1,656,776 seconds). Improving the reliability by running

all of the problems 16 times is not practical because it would have taken 306 days

to find the solutions. The solution time was expected to be high because integer

programming problems fall into NP-Hard problem types [46].

Figures 4.6 to 4.9 show the plots of the results grouped by |P |. The plots show

the solution time and solution cost against the number of switches. The figures show

more details than the figures that have all the |P | in one graph. The reason for this

is that when |P | is small, the range of values for the solution time and the cost are

much lower than when |P | is of a higher value and this allows us to better analyze the

CHAPTER 4. RESULTS AND ANALYSIS 54

● ● ● ● ● ● ● ● ●0

30000

60000

90000

10 20 30 40 50 75 100 125 150 175 200
of Switches

T
im

e(
s)

of Potential
Locations

● 5

10

15

20

CPU Time vs Number of Switches

Figure 4.5: Solutions time against the number of switches with 95% confidence
interval.

graphs. For example, if we look at the time taken to find an optimal solution when

|S| is 30 and |P | is 5, we can not see any details in Figure 4.5 but we see considerable

details in Figure 4.6.

When there are a maximum of 5 controllers to be placed for all different sets of

|S|, we have used a different controller input table (see Table 4.8). This means that

the packet processing is much higher for this result set. In Figure 4.6, the reason the

time spikes when |S| is 50 and |P | is 5 is because for all three problem instances,

the solver takes about 0.32 seconds to find the optimal solution. However, when S

is between 60 and 100, the optimal solutions are found in a shorter time. When S is

200, the time taken is about 0.67 seconds. Figure 4.7 shows the time and cost of the

CHAPTER 4. RESULTS AND ANALYSIS 55

50 100 150 200

Switches

C
P

U
 T

im
e

0.
11

s
0.

11
s0.

15
s

0.
26

s
0.

30
s

0.
67

s

Maximum 5 Controllers: Time and Cost vs Switches

3
4
5

88

12

17

26

33

C
os

t(
$1

00
0)

Time Cost

Figure 4.6: Solution time and cost vs number of switches for a maximum of 5
controller placement locations.

50 100 150 200

Switches

C
P

U
 T

im
e

0.
59

s

4m

8m

43
m

1m

Maximum 10 Controllers: Time and Cost vs Switches

4
8
12
19
23

38

49

73

10
3

C
os

t(
$1

00
0)

Time Cost

Figure 4.7: Solution time and cost vs number of switches for a maximum of 10
controller placement locations.

CHAPTER 4. RESULTS AND ANALYSIS 56

50 100 150 200

Switches

C
P

U
 T

im
e

3s
56

m

4.
0h

12
h5

0m

10
h4

1m

Maximum 15 Controllers: Time and Cost vs Switches

3
7
13
16
22

35

48

73

10
0

C
os

t(
$1

00
0)

Time Cost

Figure 4.8: Solution time and cost vs number of switches for a maximum of 15
controller placement locations.

50 100 150 200

Switches

C
P

U
 T

im
e

6s51
m

16
h1

7m

5.
0h

1d
6h

Maximum 20 Controllers: Time and Cost vs Switches

4
7
12

19
22

35

47

73

96

C
os

t(
$1

00
0)

Time Cost

Figure 4.9: Solution time and cost vs number of switches for a maximum of 20
controller placement locations.

CHAPTER 4. RESULTS AND ANALYSIS 57

optimal solutions of the average of four instances when |P | is 10. We can see that

the cost increases in a linear form but the time of the optimal solution is different.

When |S| is 150, the time taken to find the optimal solution is the longest at about

43 minutes. This is due to the fact that the four problem instances take 2 hours and

48 minutes to find the optimal solution. Interestingly, when |S| is 200, the time taken

to find the optimal solution is 79 seconds. The four instances averaged to 79 seconds

for that problem.

The solution time in Figure 4.6 to Figure 4.9 shows an increasing pattern in non

linear form. It shows that there is randomness when time is reported between the

different sample sizes. This relates to the theory that the method of eliminating

combinational computations when finding optimal solutions is done using a heuristic

method and different times are reported for the same problem sizes. However, if

we compare the cost of the optimal solutions between all the figures, we can see a

pattern appearing for our data set. All of the graphs show that cost is increasing in

linear form. When we observe Figure 4.8, we see that the cost increases similar to a

linear model. The optimal solutions are found within seconds and then jump to an

hour when |S| is 50. When |S| is past 75, the time increases 13 fold. The longest

optimization time is when |S| is 150 with a 12 hours and 50 minutes duration. The

reason why such a high optimization time exists for |S| at 150 is because on the third

instance of the experiment, the optimization time passes over the 30 hours limit. The

other optimizations are much lower. This is shown in Figure 4.5 with wide error bars

which indicates that with a 95% confidence, future repeats of the experiment (with

different data sets) may lie within the interval indicated by the bars. The result is not

reliable because it indicates that any future optimization will fall within a wide set

of possible results. When |S| is 200, the optimizer takes two hours less compared to

when |S| is 150. Similarly, for the fourth run when |S| is 150; the optimizer passes the

allowed time limit. This single instance is over time limit, which raises the average

running time from 7 hours to 10 hours.

The massive difference in solution time is explained by the wide error bars in

Figure 4.5. The time and cost when |P | is 20 is shown in Figure 4.9. For this problem

set, the time changes considerably for every value of |S|. When |S| is 30, the highest

optimization time is 2 hours and 18 minutes and the lowest is 6 minutes. When |S|
is 40, the highest solution time is over 3 hours and the lowest is 15 minutes. When

|S| is 50, the optimal solution is found in 15 minutes. The different ranges of results

CHAPTER 4. RESULTS AND ANALYSIS 58

for the four instances when |S| is 50 are much closer to each other compared to the

previous |S| sets. This is verified by Figure 4.9 where the error bars are much wider

when |S| is 30 and 40 compared to when |S| is 50. The difference of the solution times

for four instances (when |S| is 75 and |P | is 20) are: about 1 hour and 45 minutes

for the shortest time and the longest time reaches the limit of 30 hours. Instance

one and three both reach the maximum time. When |S| is between 150 and 200 and

|P | is 20, for all the problems and all instances, the maximum time is reached. Since

all the problem instances are over the time limit, this means that there would be no

error bars visible because there is no difference in solution time.

4.1.4 Results for Increasing Possible Controller Locations

In the previous section we investigated how the time and the cost of the solutions

were affected by increasing the input size. Both the set of the switches and the set

of possible controller placements were increasing. In this section, we will explore

what happens to the cost and time of optimal solutions when the number of switches

remains the same and the number of possible controller locations increases. The

goal is to observe a pattern that flat lines for the optimal time and cost to find the

solutions. A set of 20 random switches is generated for every problem because in the

previous section we saw that for all instances when |S| is 20 an optimal solution was

found.

The controller and link information remain the same as in the previous section

(see Table 4.5 and Table 4.6). Furthermore, the overall input parameters to the model

remains the same as well (see Table 4.7). Since there are only 20 switches generated

for the topology, the packets that leave from each switch will also have to be generated

(σs). A random integer between 100 and 999 is assigned for every σs. The different

problems are optimized when |S| is 20 and |P | is 5, 10, 15, 20, 25, 30, 40, 50 and 75.

In total, there are 9 problems that will be repeated 4 times.

The procedure to find optimal solutions for the problems defined above is the

same as the one described in the methodology. The optimizer returns the optimal

cost and time for each of the problems and is shown in Table 4.10 (see Appendix B

individual results).

CHAPTER 4. RESULTS AND ANALYSIS 59

Table 4.10: Planning results obtained by CPLEX for 20 switches and P =
{5, 10, 15, 20, 25, 30, 40, 50, 75}.

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

Averages

1 20 5 5 28 11,822 12,071 < 1

2 20 10 5 28 11,301 10,556 3

3 20 15 4 26 9,809 9,498 140

4 20 20 5 28 11,124 10,852 21,563

5 20 25 4 27 11,335 11,073 6,793

6 20 30 4 26 10,576 10,001 1,356

7 20 40 (5) (27) (11,396) (10,423) (27,616)

8 20 50 (4) (27) (10,539) (10,294) (54,637)

9 20 75 (4) (27) (10,716) (10,416) (82,405)

The result table shows the number of switches (|S|) and the number of maximum

possible controller placements (|P |). The output of the solutions includes the aver-

age number of placement locations where controllers are installed (|P ′|), the average

number of links that were picked by the optimizer (|L′|) and the average number of

packets that must traverse in the whole network from the switches to the controllers.

Finally, the minimum cost and the time taken by the optimizer to find the optimal

solution are shown in the last two columns. It is important to note that |P ′| and |L′|
are rounded up because we cannot have a quarter of a controller or a quarter of a

link installed.

We notice that the first problem has the most expensive solution at $10,000,

whereas the cheapest solution is $9,498 (problem 3). If we examine the individual

instances for the first problem, we see that the fourth instance is over $14,000 and the

next two cheapest instances are over $12,000. By examining individual instances for

problem 3, we can see that it has a minimum cost of about $7,000 and a maximum cost

is $10,000. However, the rest of the problems are within $10,500. The results indicate

that the cheapest solution is found by problem number 3. The cost of the optimal

solution tends to become stable as the number of controller locations increases, this

is true especially by the end of our results. The time taken by the optimizer to find

the optimal solution for problem number one is within a second. As the number of

CHAPTER 4. RESULTS AND ANALYSIS 60

potential locations increases, the time tends to be increasing because the solution to

problems 1, 2, 3 and 4 are in increasing order. However, problem 5 and 6 interrupt

this pattern. Then the pattern continues where the time taken to find the optimal

solution increases for problems 7, 8 and 9. The same problems optimized exceed the

time limit of 30 hours (108,000 seconds) with a least one of the optimization instances.

Therefore, the results numbers in parenthesis shows which problems experience the

solver going over time limit.

● ● ●

●

●

●

●

●

●

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

5 10 15 20 25 30 40 50 75
of Placements

T
im

e(
s)

20 Switches vs Time

Figure 4.10: Solution time against the same number of switches and increasing
potential locations with 95% confidence interval.

With a 95% confidence interval, Figure 4.10 shows the plot of the average optimal

time taken to find the solutions. For the first three potential placements locations,

the time taken is between 0.11 seconds and 140 seconds and the reason why lines are

straight and without error bars is because the averages and confidence intervals are

small compared to the graph interval for the time axis. The time axis’ interval is

CHAPTER 4. RESULTS AND ANALYSIS 61

every 2 hours and 46 minutes (10,000 seconds). The next interval is when |P | is 20

and that takes about 5 hours and 33 minutes and here we see a wide error bar. With

95% confidence, if new problems are optimized, their optimal solution time could be

within 3,000 and 40,000 seconds. This is equivalent to 1 hour and 11 hours. This is a

wide range indicating that it is a weak estimate of the true population mean (when

|S| and |P | is 20). The next plot points show a decreasing optimization time to find

the optimal solution. Also, they show shorter error bars. When |P | is 30, the error

bars are not visible but they exist. This is because the range is very small and it is

not visible on the graph, the confidence interval is ±3, 231 seconds from the mean.

When |P | is 40, the confidence interval is ±85, 277 seconds (23 hours). The reason

for such a large interval is because one of the four instances went over the time limit

of 30 hours. There are instances for when |P | is 50 and 75 where time is exceeded by

the optimizer; therefore, the average time increases as a result.

●

●

●

●

●

●

●
●

●

9000

9500

10000

10500

11000

11500

12000

12500

13000

5 10 15 20 25 30 40 50 75
of Placements

C
os

t(
$)

20 Switches vs Cost

Figure 4.11: Cost of the solutions while increasing the potential locations and
keeping the number of the switchs the same with 95% confidence interval.

CHAPTER 4. RESULTS AND ANALYSIS 62

From the results table shown above, the cost of the solutions are around $10,000.

We need to know how likely it is that the mean cost for each |P | represents the overall

optimization costs. Figure 4.11 shows the plot of the cost against different possible

placement location sets. With 95% confidence level, the graph displays the range

of values for each |P | that the next optimal cost will fall between. All of the error

bars are wide and the confidence interval with highest range is ±4,536 (compared to

±8,789 from the previous section). Generally, as the confidence interval gets wider,

the accuracy of the sample mean as an estimate of the population mean gets worse.

In this case, this is likely due to the fact that there are only 4 samples to draw the

confidence intervals from. To improve the accuracy of the estimate, we must increase

the number of times each problem is optimized and to do so, as we have seen in the

previous section, we must run our optimizations 16 times. If we repeat the same

experiment 16 times instead of 4 times, the optimization would finish within 40 days.

From the graph, we can see that when |P | is 15, the lowest cost ($9,498) is found.

Since the optimizer run time has passed the allowed time limit for two of the four

instances when |P | is 50 and 75, we can discard the result because it does not provide

accurate information since as the optimal cost was not always found.

In conclusion, we can see that the optimal cost (when reported) is always more

accurate than the optimal time of the solutions. As the number of switches and

potential controller locations increases so does the cost of the optimal solution. Also,

the cost of optimal solutions tends to improve if the number of potential locations

is increased. In any case, as the input size increases, the time to find an optimal

solution is also increased.

4.2 Expansion Problem: Results and Analysis

In this section, the expansion model is first explained with the same example as

in Section 4.1.2. The difference is that changes to the existing network are made.

Expansion of a network may involve adding or removing switches, changing the con-

trollers by adding, removing or completely replacing controllers or just improving the

links between controller and switches. Since we take into consideration the flow setup

latency, one change could be to lower the latency to ensure flow setup times decrease

for a better experience. Also, a network may change its policy to have deep packet

inspections with the full packet size being sent to the controllers and the expansion

CHAPTER 4. RESULTS AND ANALYSIS 63

model takes this into consideration.

4.2.1 Methodology

The expansion model has the same process as the planning model and expects the

same input format but there are some differences between the two. When we consider

an expansion scenario, if we compare the processes of the planning model (see Fig-

ure 4.1) to the expansion model, the input is changed and few additional functions

are added to be able to find the optimal solution.

If the expansion model is used to make changes to an existing network, then we

would need the results of the planning model to be included before the expansion

model can be generated. This is due to the fact that current installation of the

switches and links would have to be included into the linear program. Thus, mak-

ing us have additional implementation functionality when generating the model. In

addition, input to generate the model may be different because the controller and

possible controller locations may be different. Figure 4.12 shows the expansion model

process. These additional steps are shown with the white boxes in the figure. Since

our expansion model is a generalization of the planning model, if we were to place

controller(s) for the first time using the expansion model, the process would be the

same as in the planning model because problem input is the initial input as in the

planning model. Furthermore, there are no planning results which are added to the

expansion model.

Figure 4.12: Steps to find the optimal solution for expanding an existing SDN
network.

Generating the model and plotting functionality is the major difference. If an

expansion model is chosen, then the model will include the mathematical model from

CHAPTER 4. RESULTS AND ANALYSIS 64

the expansion. This in turn has a new objective function and additional constraints.

In the case of plotting an expansion solution, additional switches are marked on the

graph and including the links that are placed by the expansion model in Section 3.3.

4.2.2 Restrictions on Input for Expansion

Our implementation does not cover incorrect changes to the input format. If such

changes are made, the result would not be accurate. The vector that holds the

switch location information must remain the same for the expansion model for the

most part. Furthermore, certain scenarios are allowed when changing any of the

existing vectors. The location (x, y) of the switches in a network may change and its

outgoing packet rate to the connected controller may also change. If switches are to

be removed, the only possible way to remove them is by shortening the vector at the

end. Removing elements from the vector and adding new elements will not work. Any

other location is not possible as it will supply incorrect installation information from

current installation of the switches and controllers to the expansion model. If any

changes are made before the expansion model is generated, the index location of each

switch would not match the switch vector of the planning model. For example, if the

vector S had values {(1, 2), (3, 4), (8, 7)} in the planning model and in the expansion

model switch (1, 2) is removed and (5, 9) is added, then the vector for expansion

would become {(3, 4), (8, 7), (5, 9)}. The installation information from the planning

model for switch (3, 4) is now moved to (8, 7) which is incorrect. To handle these

scenarios, we must have implementation support in software by analyzing previous

and current vectors and regenerating placement information for expansion. However,

this is beyond the scope of this research and does not affect the generality of the

model.

CHAPTER 4. RESULTS AND ANALYSIS 65

Table 4.11: Allowed changes to the controller input for expansion.

Type 1 Type 2 Type 3 Type 4

Cost (κc) $10 $50 $80 $100

Ports (αc) 4 8 16 32

Processing (µc) 100 300 400 500

Controllers (ϕc) 0 0 5 8

←−−−−−−−−−−→ ←−−−−−−−−−−→
Not Used New Controllers

We assume that the possible controller placement locations vector must not change

much. The only allowed changes in this vector is to add at the end of the vector.

Furthermore, the vectors that hold information about the controllers and link types

cannot be removed or reordered. The only possible way to remove inventory in the

case of controllers is by setting the number of controllers available to zero. Table 4.11

shows the allowed changes to the controllers. New controllers added are shown in

the column marked “New Controllers”. Removing links is a little more complicated

because there is no limit to how much link can be used for each link type. To make the

model not choose a link, its link bandwidth must be zero (ωl). This should force the

optimizer to pick other links because the bandwidth of the link must be greater than

the bandwidth that is required by the switch. Table 4.12 shows the correct changes

to the links table. The first type is disabled, the second type has its bandwidth and

cost changed and finally a new link of type 3 is added.

Table 4.12: Allowed changes to link input for expansion.

Type 1 Type 2 Type 3

Cost/meter (φl) $0.05 $6.5 $12.31

Bandwidth (ωl) 0 Mbps 1.8 Mbps 1 Gbps

←−−−−−−→ ←−−−−−−→ ←−−−−−−→
Not Used Changed New Link

CHAPTER 4. RESULTS AND ANALYSIS 66

4.2.3 Cost of Removing a Link or Controller

One of the main factors that an expansion model uses to decide the optimal placement

of controllers is the cost of removing links and controllers. The cost of removing a

controller will normally include the time taken by a technician to reconfigure the

network, and may involve the physical reallocation of the device as well as efforts to

ensure that the controller is stable. This value is specified in a dollar amount because

it will be one of the costs that will be added to the cost function.

The value to remove an item from the existing network could take many forms. In

our implementation when we generate the linear problem for CPLEX, an expansion

cost multiplier is used, which is a variable that indicates how much more it would

cost to reallocate a controller or remove a link compared to the installation price for

placement. This is a value that can range from 0.01 to 1000 and that is multiplied to

the actual cost to install the controller or link.

Table 4.13: The effect of the planning cost of $13.00 under different cost-multiplier
scenarios.

Planning($) Cost-Multiplier Expansion($) Network Changes

Example 1 13.00 1000 13000 Keeps the old structure

Example 2 13.00 100 1300 Keeps the old structure

Example 3 13.00 10 130 Few changes

Example 4 13.00 1 13 More changes

Example 5 13.00 0.1 1.30 More changes

Optimal expansion is highly influenced by the cost multiplier variable. Table 4.13

shows a sample of the cost and what it might mean to the optimizer when deciding to

remove a link and place it again. If the desire is to keep much of the current network

structure and avoid changes, a higher cost should keep the structure of the current

network. The last column indicates what may happen if a specific cost multiplier is

used.

4.2.4 Detailed Example

In this section, we will be going over an expansion example of an existing SDN

network. The example from the placement section will be used to show how the

CHAPTER 4. RESULTS AND ANALYSIS 67

generalized model of expanding a network would go through both original and new

constraints. From the example in Section 4.1.2 we will be adding a new switch and

changing σ4 to one packet per second. The new switch will be located at (80,14) and

will send 16 packets per second to the controller (σ8). Figure 4.13 shows the new

changes before the expansion is performed. In the expansion figure, we can see that

on the legend, a new label that marks new switches was added to the network.

The same procedure as the placement example will be followed for the expansion

example. First, the example will go over the same constraints that we had in the

placement example and then the new constraints that decide if an existing resource

is removed or reallocated.

0 20 40 60 80
Distance (meters)

0

20

40

60

80

D
is

ta
n
ce

 (
m

e
te

rs
)

S1 :290

S2 :11

S3 :12

S4 :1 (was 16)

S5 :13

S6 :34

S7 :15

S8 :16

Expansion: 8 Switches, 5 Max Controllers at $198

Switches
Switch

Switch (Added)

Controllers
$10

$50

Possible Controller

Links
1 Mbps

10 Mbps

Figure 4.13: The modifed SDN toplogy before the expansion example. Changes are
made by adding S8 and changing σ4 to 1.

Controller Processing Capacity

Equation 3.7 still validates the incoming requests to the possible controller place-

ments. The constraint still runs exactly the same as in the example explained above

and the switches at locations 2, 5 and 6 are still allocated to P4 because nothing from

CHAPTER 4. RESULTS AND ANALYSIS 68

those switches has changed. However, as we have seen previously, S1 was assigned

to P2 but S4 was not. Switch S4 sends one packet per second to the controller, the

controller on location P2 can now have S4 connected to it. This is the only difference.

The switches 3, 7 and 8 can also be linked with P5 because it is the closest and a

controller of type one can process all the requests from the switches. The optimizer

already produces the same result when considering S3 and S7, in addition it is also

suggested that S8 be added to P5.

The total processing of packets that will have to be done at P2 is 291 packets per

second and at P5 43 packets per second. Finally, P4 stays at 58 packets per second.

The controller in location P2 has packets coming in faster than what the controller

of type one can handle. Therefore, P2 installs a type two of the controller, whereas

the other placement locations install type one of the controller because they require

below 100 packets per second. The installed controller types remain the same as in

the placement example.

Controller Port Availability

The port availability is verified by the constraint in Equation 3.5. The constraint

concludes the same as in the placement example. There are three controllers that

must be connected using a full mesh topology and they will be using |P ′| − 1 ports.

Since 3 controllers are installed, there will be 3 − 1 ports used by each controller

to create a full mesh connection. Additionally, each controller must be linked to its

assigned switches. Installed controller at location P2 has three switches connected

which results in 5 ports used. The same applies for P5. However, P2 only has two

switches connected and this means that the switch will be utilizing 4 ports only.

This constraint passes because all the controllers that are installed do not exceed the

number of ports available for use.

Controller Inventory Limits

Equation 3.8 limits how many controller types are installed. Throughout the opti-

mization, the solver ensures a controller is installed at optimal locations. By the end

of the optimization, the solver also checks for each installed controller type if it has

not exceeded the number of available controllers listed in Table 4.1.

CHAPTER 4. RESULTS AND ANALYSIS 69

Link Bandwidth Between Switch and Controller

The link bandwidth is verified the same way as in the placement example. An extra

check is performed for the new switch (S8) and since this switch only sends 16 packets

per second, it is sufficient to use a link of type one.

Controller Connectivity

Equation 3.11 ensures that the controllers are connected together. The same connec-

tivity is maintained throughout the expansion phase because the location of controller

placements did not change and the number of controllers installed did not change.

Therefore, the expansion scenario produces the same result.

Logical Constraints for Expansion

One reason we can use the expansion model for placing a new set of switches is

because of the logical constraints in the mathematical model. If a network already

exists, we use the information from the planning to provide information to the model

that will help when doing the logical constraints.

Comparing the placement phase and the expansion phase of controller connec-

tivity, we notice that there is a reallocation of S4 from placement P5 to the new

placement P2 (v142). In addition, the new switch S8 is added to controller at location

P5 (v185). Equation 3.23 is used to decide what happens to the existing links if v̄145 is

set. The equation indicates that a link can only be removed if it is set. In our case,

link between switch 4 and possible controller location 5 is set because in the planning

phase, this link was placed to form an optimal solution. Since the switch is now con-

nected to an installed controller at location 2, the existing link to controller location

5 must be removed. The equation below shows how an existing link is removed. We

know that a link between switch 4 and controller location 5 can not be kept anymore

and the variable v145 is forced to 0. The only possible method to satisfy the constraint

is to set Rv145 to 1. The cost to remove an existing link is added to the objective

function in equation 3.18.

Rv145 + v145 ≥ v̄145

1 + 0 ≥ 1

Below, we also show the constraint that checks if a link can be kept if it is installed.

CHAPTER 4. RESULTS AND ANALYSIS 70

Again, since we know that the existing installed link v145 must be set to 0, the only

possible way to satisfy the constraint is to set both sides of the variables to 0.

v145 −Kv145 ≤ v̄145

0− 0 ≤ 1

We know that for the new connection between switch 4 and the installed controller

at location 2 is set (v142). The same constraint that checks if a link can be removed

is considered again (Equation 3.23). This time, since an existing link is not present

(v̄142), the constraint is satisfied only when v142 is set. This implies that a non existing

link can not be removed and Rv142 is not set.

Rv142 + v142 ≥ v̄142

0 + 1 ≥ 0

Currently connection between switch 4 and its controller does not exist. A link

between switch 4 and controller 2 must be placed. The equation bellow shows how a

new link is included in the expansion network. Since this is a new link, the installed

value of this link from the planning phase is 0 (v̄142). The inequality bellow forces the

left hand side to be set to 1 so that it can be satisfied. This implies that Kv142 is

also set. The expansion cost calculation in Equation 3.18 includes Kvlsp to the cost

calculation.

v142 −Kv142 ≤ v̄142

1− 1 ≤ 0

Above we considered scenarios when an existing link of a switch to a controller is

removed and then added elsewhere. In this scenario, we consider what happens when

we add a new switch to the network. We know the optimal location to connect switch

8 is at installed controller location 5 (vl85). Also, we know that this is a new switch

and it could have not been installed in the planning phase; therefore, v̄l85 is set to 0.

The constraint to remove the existing link is ignored because just by having vlsp set,

the inequality is satisfied.

Rv185 + v185 ≥ v̄185

CHAPTER 4. RESULTS AND ANALYSIS 71

0 + 1 ≥ 0

Connecting switch number 8 to a controller is performed with the inequality bel-

low. Since v̄185 is set to 0, both v185 and Kv185 is set to 1 to satisfy the inequality.

v185 −Kv185 ≤ v̄185

1− 1 ≤ 0

The list bellow summarizes the variables that are picked by the solver when run-

ning the expansion example. The underlined variables

• Controller Placement (xcp): x22, x15, x14

• Switch and Controller Connectivity(vlsp): v212, v
1
75, v

1
54, v

1
64, v

1
24, v

1
35, v

1
42, v

1
85,

Kv185, Kv
1
42, Rv

1
45.

• Full Mesh Controller Topology(zlpq): z
1
42, z

1
52, z

1
54

Cost of the solution

From the expansion model and Equation 3.3.2, we can see that only the K and R

variables make up the cost. Since we are expanding an existing solution, the only

changes suggested (variables that are set and are included into the cost function) are:

Kv185, Kv
1
42, and Rv145. From the solver, we know the costs of the variables are formed

as follows:

• $0.696 for Kv142 (Kvlsp)

• $1.897 for Kv174 (Kvlsp)

• $196.087 for Rv145 (Rvlsp)

• Total: $198.68

The total cost of $198.68 for the expansion example is the cost for removing a

link and adding two links. The most expensive cost for the solution of the expansion

example is $196.08 when removing a link. This is because the cost of removing a link

was a multiplied by 100. A cost multiplier of 100 times the placement cost keeps the

network structure intact as much as possible. Finally, the optimal network, once the

CHAPTER 4. RESULTS AND ANALYSIS 72

expansion is completed, is shown in Figure 4.14. The legend indicates which links

where affected by the expansion model. In this case, links to S4 and S8 were affected

by the expansion. Since we already know from the example, S4 has been moved but

S8 is new.

0 20 40 60 80
Distance (meters)

0

20

40

60

80

D
is

ta
n
ce

 (
m

e
te

rs
)

S1 :290

S2 :11

S3 :12

S4 :1

S5 :13

S6 :34

S7 :15

S8 :16

Expansion: 8 Switches, 5 Max Controllers at $198

Switches
Switch

Switch (Added)

Controllers
$50

$10

Possible Controller

Links
10 Mbps

1 Mbps

1 Mbps (Expansion)

Figure 4.14: Optimal solution found by CPLEX for the expansion example.

CHAPTER 4. RESULTS AND ANALYSIS 73

4.2.5 Results for Adding and Removing Switches

Many of the changes that can be made to an existing SDN network is to either add

or remove switches. This is the case in a real network where new switches are added

to support growth or older switches are removed. In this section, we will optimize

using the expansion model by adding or removing switches to an existing network.

Three topologies are generated at random. The switch locations and the possible

controller placement locations are generated randomly. For each switch, the number

of packets the switch sends are generated randomly between 100 and 999 (as shown

in Table 4.7). These topologies are optimized using the same controller and link

input parameters as in the planning section (see Table 4.8, and 4.6). The rest of

the parameters are the same. The topologies consist of 20, 25 and 30 switches and

and for each set of switches, 40 possible controller locations are also generated. The

planning model is used to find the optimal solutions for the topologies. The same

optimal solutions would have been evident if we used the expansion model to solve

the initial topologies but the expansion model generates more variables and extra

work has be implemented to handle this scenario. That’s why we decided to use the

planning model.

Once the planning solutions are found for the 3 topologies, the time and cost of the

optimal solutions is recorded. Table 4.14 shows the optimized topologies that we will

be using when expanding the networks. The first topology consists of 20 switches and

40 possible placement locations and the optimal solution of $7,746 was found in 176

seconds by the planning model. The second topology has 25 switches with optimal

solution cost of $10,810 while reaching the maximum running time. The solution in

parenthesis shows that the reported values for topology number 2 are not optimal.

The third topology almost reaches the time limit and is by $3,000 less expensive than

topology number 2.

Using the results of the planning scenario, we modify each of the topologies and run

our expansion model to have a solution for the changed network. First, we optimize

by removing existing switches from the network and then by incrementally adding

switches in steps of five. When we add switches we also add ten possible placement

locations of controllers. Furthermore, each time we add a switch, we generate the

location of the switch by randomly generating two integer values in point form x, y.

With each new switch, the number of packets that it sends to the controller is also

CHAPTER 4. RESULTS AND ANALYSIS 74

Table 4.14: Toplologies that are optimized using the planning model before different
expansion scenarios are performed.

CPLEX

Top |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 20 40 5 30 12,190 7,746 176

2 25 40 (4) (31) (14,164) (10,810) (108,000)

3 30 40 4 36 14,278 10,909 105,636

generated randomly between 100 and 999 (see Table 4.7). When expanding the

topologies, for each topology we consider that we have the same controller and link

inventory as shown in Table 4.8, and 4.6. Figure 4.15 shows topology 3, the planning

results are plotted using the optimal solution from the planning model. The 15 added

switches (white circles) are plotted. This new topology would be expanded using the

expansion model.

CHAPTER 4. RESULTS AND ANALYSIS 75

0 200 400 600 800
Distance (meters)

0

200

400

600

800

1000

D
is

ta
n
ce

 (
m

e
te

rs
)

Expansion: 45 Switches, 50 Max Controllers at $10909

Switches
Switch

Switch (Added)

Controllers
$1200

$2500

Possible Controller

Links
100 Mbps

Figure 4.15: Existing SDN network with 30 switches and 40 possible controller
locations. Fifteen new switches are added and 10 controller placement locations.

The expansion results are shown in Table 4.15. The first column references the

starting topology as shown in Table 4.14. The third and fourth columns reflect the

changes that are done to the topology by either adding (+|S|) or removing (−|S|)
switches. The fifth column (+|P |) shows how many possible placements are added to

the input model. The optimal expansion of the network is shown under the column

“CPLEX” which shows how many new controllers have been added (+|C|), how many

links have been added (+|L|) and how many links have been removed (−|L|). The

number of new links includes the links for switches to controllers or inner controller

connectivity changes. Finally, the last two columns are the optimal solution ($) and

the time taken to find the optimal solution (CPU).

The first three rows of the expansion results show that 15, 10 and 5 switches were

removed from the network. The optimal solution is found instantaneously because

the switches are removed and we consider this to be effortless. In this case, we are

removing the switches and the links from the switches to the controllers. If in the

CHAPTER 4. RESULTS AND ANALYSIS 76

other scenario where we remove and add a link elsewhere for a switch, here we do

take into the consideration the cost to remove the link and place the new link in the

optimal solution. Therefore, the cost to remove switches is 0. The next 3 rows for

topology one where 5, 10 and 15 switches are added, we have introduced one more

controller. If a controller is introduced then it must be connected in a full mesh to

other controllers. By examining the planning table, we see that topology one has five

controllers already installed. This means that after the expansion, there will be six

controllers. We already know that a total of six controllers in a full mesh topology

consume 15 links. From, the placement section we know that 10 links are used to

connect the controllers. Therefore, it takes five additional links to connect the 6th

controller. The other 5 new links connect the 5 new switches that were added. This is

why we see 10 new links. Similarly, when we examine the second topology expansion,

the solutions to the problems that remove the switches from the network are quick to

converge. Also, when 5, 10 and 15 switches are added, only one additional controller

is placed. From the previous topology, we have seen that if a controller is added, then

additional 5 links are needed. Furthermore, one link from a switch to a controller is

removed and added elsewhere and this results of the new links value of 6 links. The

third topology is also introducing only one additional controller where an existing

switch is reallocated to the new controller.

If we examine the cost of the solutions, we can see that the first topology has

the highest cost when adding switches and possible placement locations. This is

because a total of 5 links are removed and then added. Removing 5 links multiples

the cost of adding by 100 for each removed link. Next, 6 links are removed and this

is why we see the cost of 5th row close to the 6th row. As for the second and the

third topology, only one link is removed and one controller is added. This gives a

constant cost increase because we keep adding five controllers each time. The time

taken to find the solutions is considerably less for the expansion problem compared to

the placement problem. When the switches are removed, the time taken to find the

optimal solution is extremely fast. This is because it is cheaper and faster to remove

the links where optimality existed than to recalculate everything. We can see that

removing links is less than a second (between 70 to 100 milliseconds).

Figures 4.15 and 4.16 show the result of placement versus expansion for the third

topology. There are few items to notice in the figure. As we have seen in the results

CHAPTER 4. RESULTS AND ANALYSIS 77

Table 4.15: Results obtained with CPLEX for expansion scenarios by adding or
removing switches.

CPLEX

Top |S′| +|S| −|S| +|P | +|C| +|L| −|L| Cost($) CPU(s)

1 5 0 15 0 0 0 0 0 < 1

1 10 0 10 0 0 0 0 0 < 1

1 15 0 5 0 0 0 0 0 < 1

1 25 5 0 10 1 10 5 26,183 3.67

1 30 10 0 10 1 16 6 29,331 2.44

1 35 15 0 10 1 20 5 32,812 1.58

2 10 0 15 0 0 0 0 0 < 1

2 15 0 10 0 0 0 0 0 < 1

2 20 0 5 0 0 0 0 0 < 1

2 30 5 0 10 1 6 1 3,563 < 1

2 35 10 0 10 1 11 1 7,890 < 1

2 40 15 0 10 1 17 2 10,425 4.73

3 15 0 15 0 0 0 0 0 < 1

3 20 0 10 0 0 0 0 0 < 1

3 25 0 5 0 0 0 0 0 < 1

3 35 5 0 10 1 6 1 5,529 < 1

3 40 10 0 10 1 11 1 10,060 1.36

3 45 15 0 10 1 16 1 11,880 4.60

table above, only one link was relocated. This is shown with the solid blue dot and

dark dashed lines. The other important observation is that the placement of the new

controller is approximately in the middle of the whole network. We can see that

some of the new switches that are added during expansion are very far from the new

controller which is the only controller connecting them. This is due to the fact that

the controller processing capacity does not let any other new switches to be connected

to the existing controllers and that changes to existing links is not optimal because

of the high cost to remove links.

CHAPTER 4. RESULTS AND ANALYSIS 78

0 200 400 600 800
Distance (meters)

0

200

400

600

800

1000
D

is
ta

n
ce

 (
m

e
te

rs
)

Expansion: 45 Switches, 50 Max Controllers at $11880

Switches
Switch

Switch (Added)

Controllers
$2500

$1200

$6500

Possible Controller

Links
100 Mbps

100 Mbps (Expansion)

Figure 4.16: Expansion to an existing SDN network after adding 15 switches and
10 possible controller locations.

4.2.6 Results for Different Cost of Removing Links or Con-

trollers

In Section 4.2.3, we have seen that the optimal placement of the expansion model is

influenced by the cost of removing existing items in the network. The more expensive

it is to remove an existing link the less likely there will be changes to the existing net-

work. When constraints fail, then the existing network will have to undergo changes.

An example may be when an existing link has to transfer more packets than it is

physically capable of doing. In this case, the link bandwidth constraint will fail and

the existing link will have to be removed and be replaced by a new link. The effect

of the removal cost value of the links and controllers will be explored in this section.

The methodology is the same as in Section 4.2.1. Controller and link information

is used from the previous section (see Table 4.8, and 4.6). The planning of a topology

CHAPTER 4. RESULTS AND ANALYSIS 79

is done and the planning result is used to indicate which of the controllers and links

already exist in the expansion model. Twenty switches and 40 possible controller lo-

cations are generated for the topology and the optimizer finds the solution. Table 4.16

shows the optimization result for the topology. The solution time has exceeded the

30 hours time limit and the optimizer is stopped. This means that a better optimal

cost for this solution may exist. The topology is depicted in Figure 4.17.

Table 4.16: A topology that is optimized before different expansion scenarios are
run to add 10 switches with multiple cost variations.

CPLEX

|S| |P | |P ′| |L′| Packets Cost($) CPU(s)

20 40 (4) (26) (10,155) (7,696) 108,000

The results to the expansion of networks with different cost to remove items from

the network is optimized and shown in Table 4.17. The first column is the problem

number and the second column is the Cost Multiplier. The third column (+|S|)
shows how many switches were added to the network. Since the controller possible

placement locations are 40, it was not necessary to add more locations because only

4 placement locations were used in the planning model. The remainder of the results

show the number of controllers that were added or changed (+|C|), the number of

links added (+|L|) and the number of links that were removed (−|L|).
The cost multiplier starts with a very high value where if a link of 5 meters costs

$6 to plan, the removal of it for the first problem would be $600. Down until the 5th

problem, the removal of a link would cost more than the planning. Problem number

6 has a removal cost that is the same as the planning cost. Finally, problems 7 and

8 make it possible for the existing network to change because the cost to move a link

from one place to another is $3 and $0.06 (compared to $6 planning cost).

CPLEX results show that throughout the different problems, at least one controller

is added (+|C|). The minimum number of links that are added are 10 because we

are adding 10 switches to the network. Problems 1, 2 and 3 all have the same cost

because one controller is added and all the new switches are connected. Problem

CHAPTER 4. RESULTS AND ANALYSIS 80

0 200 400 600 800
Distance (meters)

0

200

400

600

800

D
is

ta
n
ce

 (
m

e
te

rs
)

20 Switches, 40 Max Controllers at $7696

Switches
Switch

Controllers
$1200

$2500

Possible Controller

Links
100 Mbps

Figure 4.17: Existing SDN network with 20 switches and 40 possible controller
locations.

number 4 adds two controllers and removes 4 links. The 4 links that are removed, are

then added back which is why we see 14 new links on the result table. The optimal

cost of the solution of problem 4 is less compared to problem number 3 because the

solver found it cheaper to reallocate 4 links (−|L|). This is because the cost multiplier

decreased by 50% from problem 3 to problem 4. Problem number 5, 6, 7 and 8 all

place two types of controllers and reallocate 2 links. The interesting part here is that

although the number of switches and the number of links remain the same, the optimal

solution price gets cheaper for every problem. Problem 8 is cheaper than problem

7, problem 7 is cheaper than problem 6 and problem 6 is cheaper than problem 5.

This happens because as the problem number increases, the cost multiplier decreases.

And it will affect the optimal price of the solutions because the same number of links

is being removed and then added again elsewhere (for problems 5 to 8). The results

from problems 1 to 3 are verified because the cost remains the same even though

CHAPTER 4. RESULTS AND ANALYSIS 81

Table 4.17: Results obtained with CPLEX for expansion scenarios with multiple
cost variations.

CPLEX

Problem Cost Multiplier |+ S| +|C| +|L| −|L| Cost($) CPU(s)

1 100 10 1 10 0 7,511 1

2 80 10 1 10 0 7,511 <1

3 50 10 1 10 0 7,511 2

4 25 10 2 14 4 7,470 11

5 10 10 2 12 2 6,101 8

6 1 10 2 12 2 5,171 25

7 0.5 10 2 12 2 5,120 21

8 0.1 10 2 12 2 5,078 84

the cost multiplier is decreasing. The cost multiplier only affects the items that are

removed and problems 1 to 3 do not have any links that are removed so the optimal

solution does not change. There is a pattern in finding the optimal solution for every

problem where, as the cost multiplier decreases, the time taken to find the optimal

solution increases.

Figure 4.18 shows the optimal expansion of problem number 8. The figure shows

two switches that changed the controller that they were connected to from the plan-

ning phase. The dashed black coloured links show which link were reallocated during

the expansion. A controller of type two and type one is also added by the end of the

expansion.

4.3 Concluding Remarks

Based on the optimizations results of different scenarios for the planning and expan-

sion model, we were able to understand how the models perform in terms of time

taken and cost to find the optimal solution. The results from the planning model

tells us how the planning model performs and the results from the expansion model

show us what can be done to change an existing network and finally shows the cost

and time taken to find the optimal solution.

CHAPTER 4. RESULTS AND ANALYSIS 82

0 200 400 600 800
Distance (meters)

0

200

400

600

800

D
is

ta
n
ce

 (
m

e
te

rs
)

Expansion: 30 Switches, 40 Max Controllers at $5078

Switches
Switch

Switch (Added)

Controllers
$1200

$2500

Possible Controller

Links
100 Mbps

100 Mbps (Expansion)

Figure 4.18: The expansion to existing SDN network by setting the costs of remov-
ing items to 1/10th of what planning costs are.

The planning result starts from a small input size and grows to a large input size

to see how the model performs. The planning model is used to optimize 36 different

problems. The first problem, at sample size of 10 switches and 5 possible controller

locations, the time taken to find the optimal solution is less than a second. However,

the last problem, at an input size of 200 switches and 20 possible controller locations,

the time taken to find an optimal solution is over 30 hours. The size of the problem is

increased from the small problem size to the large problem size and its cost and time

to find the solution is recorded. We have seen a pattern for the solution time that, as

the problem size increased, the time to find the optimal solution also increased in non-

linear form. Furthermore, the price of the solution always increased with the input

size. This is expected as the problem type falls in the NP-Complete. We have also

investigated at what happens to the cost of the solution as we increased the possible

controller locations while keeping the number of switches the same. We found that

CHAPTER 4. RESULTS AND ANALYSIS 83

the more controller locations that are present, the cheaper the solution cost became

(up to a certain point).

First, expansion result starts by expanding three topologies where switches are

either added or removed. Second, we investigated how the cost to remove items

from an existing SDN network affects the expansion result. The expansion result

to remove switches from an existing network shows that it is a no cost step and

it is always a quick operation. However, when switches are added, to expand the

network, the solver takes time but it is a quick operation. The existing switches are

either reallocated to another controller or they remain the same. As for the new

switches, most of the time they are connected to a newly placed controller. Finally,

the controller connectivity is established with the new controller(s) and the rest of

the existing controller(s). We repeatedly investigated the result of the expansion by

having an expansion cost that started at 100 times the planning cost and decreasing

it until 1
10

of the planning cost. At a cost of 100 times the planning cost to remove

existing items from the network, adding 10 switches did not make any changes to the

existing network. Only an additional controller is added to support the 10 switches.

The time taken to expand the problem was within 1 second. As the cost to remove

existing items from the network decreased, the optimal solution cost for the expansion

also decreased. Furthermore, changes to the existing network is suggested and the

time to find the optimal solutions increased. The next chapter summarizes the thesis

and makes recommendations for improvements.

Chapter 5

Conclusions and Future Work

Since SDN networks move the decision making into a controller, it is essential to

develop methods to find the optimal placement of the controller(s) in a network.

This study finds the optimal placement of controllers on a network by suggesting the

location and the number of controllers for two network planning scenarios: a new SDN

network and an existing SDN network that requires change. Moving current networks

to SDN is optimized by a mathematical model that minimizes the cost of placing

controllers. The objective is to find the minimum cost of placing the controllers

while considering network latency for flow setup, controller processing, link bandwidth

controllers and switches and finally, connectivity between controllers. Existing SDN

networks that need planning process are modelled by the second mathematical model

that considers already installed equipment.

The planning model consists of a binary integer program that minimizes the cost of

placing controllers on a network while keeping the flow setup latency under a threshold

and respecting the inventory that is available for the planning process. The model

also takes into consideration the link bandwidth between switches and controllers in

the case full flows are sent to the controller for processing. In the event that multiple

controllers are installed, they can then be connected to each other using the full mesh

topology. The expansion model is a mixed integer program and suggests changes

to the existing SDN network by performing the planning process over the existing

infrastructure. For every part of the existing network, the expansion model decides if

it is better to remove the existing infrastructure, replace it with a better option from

the inventory or just add new equipment.

Prior to planning, different types of network topologies are generated that take

into account profiles of controllers and links, randomized locations of switches and

84

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 85

randomized possible placement controller locations. Results indicate that optimal

controller planning is performed in under one second when input size is small (i.e. 10

switches). In general, we can see a pattern that shows that as the input size increases,

the time to find the optimal solution also increases. For example, when the number

of switches is increased from 10 to 20, it takes 13 times longer to find the optimal

solution.

In terms of cost, we can also see some general trends. The first thing we can

observe is that the cost of solutions is higher as the input size increases. As the number

of possible controller locations increased, for the same number of switches, the optimal

cost was found to be slightly cheaper (up to a certain point). For example, planning

100 switches gives an optimal cost of $49,489 for 10 possible controller placement

locations. Increasing the number of possible controller locations to 20, brings the

optimal cost of placing controllers to $47,172. The optimal cost is cheaper because

the optimizer is able to place controllers closer to the switches.

Our expansion includes two types of experiments. The first investigates the result

of the expansion model by adding and removing switches. The second experiment

investigates how the existing network changes with different cost to remove existing

inventory from the network. Before any expansion topology can be optimized, plan-

ning the network by the planning model must be done. For the first experiment, 3

different networks are planned randomly that form the topologies that our expan-

sion model performs modifications on. Then for each of the topologies, 15, 10, and

5 switches are removed from the network and 5, 10, and 15 switches are added to

the network before expansion is run. The results of the optimal solutions show that

removing items from the network is inexpensive in cost and time. However, when

adding 5, 10 and 15 switches to the network, the solution time and cost of the net-

work increases. However, when switches are added, to expand the network, the solver

takes time but it is a quick operation. The time to expand an existing network by

adding 15 switches ranges from 1 to 4 seconds. The cost of the solutions depend on

wether an existing item is reallocated, if so, the optimal solution cost is much more

expensive.

The second expansion experiment involves in adding a set of switches to an exist-

ing topology with the cost to remove the existing inventory that starts at 100 times

the planning cost and goes down to 1
10

of the planning cost. From the results, we

observe that the optimal solution when the removal cost of the existing inventory is

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 86

100, the existing network is not changed at all. A controller is placed for the addi-

tional switches that were added. As the cost to remove existing inventory decreased,

the existing network started changing and the optimal solution cost also decreased.

Furthermore, the cost to remove existing inventory decreased, changes to the existing

network became more frequent.

5.1 Future Work

We have limited our flow setup latencies because we are not including queuing on

controllers that process switch requests. We only consider the transmission, propaga-

tion and processing delays. Adding queuing delay could be an improvement because

a switch would be guaranteed a maximum end-to-end delay.

Currently, before we generate our expansion model, in our implementation, we

can only make a few changes to the vectors of our input to generate the model files.

For example, only removing or adding of switches or placement locations is possible.

Another improvement could be to analyze the vectors of the switches and possible

controller locations and, based on the changes that are proposed for the expansion,

the implementation would reorganize the existing controller and switch configurations

and generate a proper expansion model.

When the topology is formed, we assume that only table synchronization between

controllers is performed. This may not always be the case because a controller may

be configured to send traffic to the next possible controller for inspection (in case

of a deep packet inspection for example). With our assumption, we have limited

our models to the cheapest link type when connecting the controllers. A future

improvement to the models would be to pick the correct link type between controllers.

The exact algorithm takes a lot of time to find the optimal solutions. In our

examples, we have seen that it takes 19 days for 4 instances to run the planning of

controllers on a SDN network. One solution to have improvements over the exact

method is to run many problems and allow the solver to auto tune the parameters

for each problem. This could reveal parameters that could help with future optimiza-

tions. Even so, the improvement would be negligible because we already know that

the planning and expansion problems are NP-Complete and that the complexity in-

creases with respect to the problem size. A possible improvement is to derive a local

search algorithm that would find a solution in polynomial time. However, there is no

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 87

guarantee that it will find the optimal solution because the algorithm may become

stuck in the first local minimum that it encounters. As a result, future work can be

expanded to apply more advanced heuristic algorithms such as Tabu Search. This

would help the algorithm pass the local minimum and find solutions that are closer

to the optimal solution [47].

List of References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[2] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and control element
separation (forces) framework,” RFC3746, pp. 5–30, 2004.

[3] M. Kind, F. Westphal, A. Gladisch, and S. Topp, “Splitarchitecture: Applying
the software defined networking concept to carrier networks,” in World Telecom-
munications Congress (WTC), 2012, pp. 1–6, 2012.

[4] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular networks,” in
Software Defined Networking (EWSDN), 2012 European Workshop on, pp. 7–12,
2012.

[5] D. Venmani, D. Zeghlache, and Y. Gourhant, “Demystifying link congestion
in 4g-lte backhaul using openflow,” in New Technologies, Mobility and Security
(NTMS), 2012 5th International Conference on, pp. 1–8, 2012.

[6] T. Luo, H.-P. Tan, and T. Quek, “Sensor openflow: Enabling software-defined
wireless sensor networks,” Communications Letters, IEEE, vol. 16, no. 11,
pp. 1896–1899, 2012.

[7] D. Simeonidou, R. Nejabati, and S. Azodolmolky, “Enabling the future optical
internet with openflow: A paradigm shift in providing intelligent optical network
services,” in Transparent Optical Networks (ICTON), 2011 13th International
Conference on, pp. 1–4, 2011.

[8] S. Gringeri, N. Bitar, and T. Xia, “Extending software defined network principles
to include optical transport,” Communications Magazine, IEEE, vol. 51, no. 3,
pp. 32–40, 2013.

[9] M. Shirazipour, Y. Zhang, N. Beheshti, G. Lefebvre, and M. Tatipamula, “Open-
flow and multi-layer extensions: Overview and next steps,” in Software Defined
Networking (EWSDN), 2012 European Workshop on, pp. 13–17, 2012.

[10] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet
and circuit network convergence with openflow,” in Optical Fiber Communication
(OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference
on (OFC/NFOEC), pp. 1–3, 2010.

88

89

[11] V. Gudla, S. Das, A. Shastri, G. Parulkar, N. McKeown, L. Kazovsky, and
S. Yamashita, “Experimental demonstration of openflow control of packet and
circuit switches,” in Optical Fiber Communication (OFC), collocated National
Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1–
3, 2010.

[12] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula, “Realizing
packet-optical integration with sdn and openflow 1.1 extensions,” in Communi-
cations (ICC), 2012 IEEE International Conference on, pp. 6633–6637, IEEE,
2012.

[13] M. Channegowda, P. Kostecki, N. Efstathiou, S. Azodolmolky, R. Nejabati,
P. Kaczmarek, A. Autenrieth, J.-P. Elbers, and D. Simeonidou, “Experimen-
tal evaluation of extended openflow deployment for high-performance optical
networks,” in European Conference and Exhibition on Optical Communication,
Optical Society of America, 2012.

[14] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown, “Where
is the debugger for my software-defined network?,” in Proceedings of the first
workshop on Hot topics in software defined networks, pp. 55–60, ACM, 2012.

[15] M. Canini and D. Kostic, “Systematic software testing meets networking,”

[16] M.-K. Shin, H. H. Kwak, J.-Y. Choi, and M. Kang, “Verisdn: Formal verification
for software-defined networking (sdn),”

[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyp-
ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, p. 19, ACM, 2010.

[18] P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres, I. D. Alvarenga, C. S. Ro-
drigues, and O. C. M. Duarte, “Experimenting content-centric networks in the
future internet testbed environment,” in Workshop on Cloud Convergence, ICC,
2013.

[19] M. Kuzniar, M. Canini, and D. Kostic, “Often testing openflow networks,” in
Software Defined Networking (EWSDN), 2012 European Workshop on, pp. 54–
60, IEEE, 2012.

[20] V. Mann, A. Vishnoi, A. Iyer, and P. Bhattacharya, “Vmpatrol: Dynamic and
automated qos for virtual machine migrations,” in Network and Service Man-
agement (CNSM), 2012 8th International Conference on, pp. 174–178, IEEE,
2012.

[21] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of an entire
network (and its hosts),” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, pp. 109–114, ACM, 2012.

[22] R. D. Corin, M. Gerola, R. Riggio, F. De Pellegrini, and E. Salvadori, “Vertigo:
Network virtualization and beyond,” in Software Defined Networking (EWSDN),
2012 European Workshop on, pp. 24–29, IEEE, 2012.

90

[23] Z. Bozakov, “An open router virtualization framework using a programmable
forwarding plane,” ACM SIGCOMM Computer Communication Review, vol. 40,
no. 4, pp. 439–440, 2010.

[24] Z. Bozakov, “Architecture and algorithms for virtual routers as a service,” in
Quality of Service (IWQoS), 2011 IEEE 19th International Workshop on, pp. 1–
3, IEEE, 2011.

[25] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Source routed
forwarding with software defined control, considerations and implications,” in
Proceedings of the 2012 ACM conference on CoNEXT student workshop, pp. 43–
44, ACM, 2012.

[26] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar, “Flowvisor: A network virtualization layer,” OpenFlow Switch
Consortium, Tech. Rep, 2009.

[27] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yala-
gandula, “Automated and scalable qos control for network convergence,” Proc.
INM/WREN, vol. 10, pp. 1–1, 2010.

[28] K. Nam-Seok and H. Hwanjo, “Openqflow: Scalable openflow with flow-based
qos,” IEICE transactions on communications, vol. 96, no. 2, pp. 479–488, 2013.

[29] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable video
streaming over openflow networks: An optimization framework for qos rout-
ing,” in Image Processing (ICIP), 2011 18th IEEE International Conference on,
pp. 2241–2244, IEEE, 2011.

[30] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization framework for
qos-enabled adaptive video streaming over openflow networks,” 2013.

[31] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[32] “Trema openflow controller,” Aug 2013.

[33] D. Erickson, “Floodlight java based openflow controller,” Last accessed, Ago,
2012.

[34] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
controller performance in software-defined networks,” in USENIX Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE), 2012.

[35] A. Voellmy and J. Wang, “Scalable software defined network controllers,” in Pro-
ceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, pp. 289–290, ACM,
2012.

91

[36] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, et al., “Onix: A distributed control
platform for large-scale production networks.,” in OSDI, vol. 10, pp. 1–6, 2010.

[37] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn control,” 2013.

[38] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,”
in Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, (New York, NY, USA), pp. 7–12, ACM, 2012.

[39] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition
Letters, vol. 31, no. 8, pp. 651 – 666, 2010. Award winning papers from the
19th International Conference on Pattern Recognition (ICPR) 19th International
Conference in Pattern Recognition (ICPR).

[40] Y. nan HU, W. dong WANG, X. yang GONG, X. rong QUE, and S. duan
CHENG, “On the placement of controllers in software-defined networks,” The
Journal of China Universities of Posts and Telecommunications, vol. 19, Supple-
ment 2, no. 0, pp. 92 – 171, 2012.

[41] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and
R. Boutaba, “Dynamic controller provisioning in software defined networks,”
International Conference on Network and Service Management, p. 188, May
2013.

[42] W. L. Winston and J. B. Goldberg, Operations research: applications and algo-
rithms. Thomson/Brooks/Cole Belmont, 2004.

[43] M. R. Pasandideh and M. St-Hilaire, “Automatic planning of 3g umts all-ip re-
lease 4 networks with realistic traffic,” Computers & Operations Research, vol. 40,
no. 8, pp. 1991–2003, 2013.

[44] S. Chamberland, M. St-Hilaire, and S. Pierre, “An analysis of different colocated
router network topologies within a pop in ip networks,” in Electrical and Com-
puter Engineering, 2003. IEEE CCECE 2003. Canadian Conference on, vol. 2,
pp. 733–736 vol.2, 2003.

[45] I. I. CPLEX, “V12. 1: Users manual for cplex,” International Business Machines
Corporation, vol. 46, no. 53, p. 157, 2009.

[46] R. G. Michael and D. S. Johnson, “Computers and intractability: A guide to the
theory of np-completeness,” WH Freeman & Co., San Francisco, 1979.

[47] M. Sun, “A tabu search heuristic for the uncapacitated facility location problem,”
in Metaheuristic Optimization via Memory and Evolution (R. Sharda, S. Vo,
C. Rego, and B. Alidaee, eds.), vol. 30 of Operations Research/Computer Science
Interfaces Series, pp. 191–211, Springer US, 2005.

92

APPENDIX A. SMALL TO LARGE INPUT SIZES RESULTS 93

Appendix A

Small to Large Input Sizes Results

A.1 Instance 1

Table A.1: Small to Large Input Sizes: Instance 1

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 10 5 2 11 5,350 3,013 < 1

2 10 10 3 13 6,124 4,450 < 1

3 10 15 3 13 5,196 4,458 5

4 10 20 3 13 5,584 4,398 8

5 20 5 1 20 9,972 4,622 < 1

6 20 10 5 30 11,537 8,905 7

7 20 15 4 26 9,149 6,592 5

8 20 20 4 26 11,237 7,964 79

9 30 5 1 30 14,617 6,679 < 1

10 30 10 5 40 16,531 12,880 1

11 30 15 6 45 17,325 13,179 150

12 30 20 5 40 16,362 12,388 3,195

13 40 5 2 41 20,143 8,254 < 1

14 40 10 6 55 24,388 20,566 42.62

15 40 15 6 55 21,117 17,415 2,614

16 40 20 7 61 25,216 20,227 11,388

17 50 5 2 51 24,142 8,706 < 1

18 50 10 5 60 27,060 23,631 6.04

19 50 15 5 60 29,491 25,497 15,834

20 50 20 7 71 27,911 21,896 1,185

21 75 5 3 78 44,172 13,904 < 1

22 75 10 8 103 41,493 36,325 378

23 75 15 8 103 41,054 36,493 6,967

24 75 20 6 90 40,673 35,868 12,375

25 100 5 4 106 56,461 16,480 < 1

26 100 10 9 136 56,143 49,989 32

27 100 15 11 155 54,528 48,059 52,280

28 100 20 9 136 57,395 49,634 1,068

29 150 5 3 153 86,751 25,599 < 1

30 150 10 7 171 82,911 75,107 35

31 150 15 13 228 84,054 75,458 65,546

32 150 20 8 178 85,010 77,531 108,000

33 200 5 5 210 113,006 32,612 < 1

34 200 10 10 245 115,517 109,004 96

35 200 15 10 245 104,323 95,112 7,310

36 200 20 11 255 106,902 100,031 108,000

APPENDIX A. SMALL TO LARGE INPUT SIZES RESULTS 94

A.2 Instance 2

Table A.2: Small to Large Input Sizes: Instance 2

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 10 5 2 11 5,350 3,012 < 1

2 10 10 3 13 6,124 4,450 < 1

3 10 15 3 13 5,196 4,458 5

4 10 20 3 13 5,584 4,398 8

5 20 5 1 20 9,972 4,622 < 1

6 20 10 5 30 11,537 8,905 7

7 20 15 4 26 9,149 6,592 5

8 20 20 4 26 11,237 7,964 79

9 30 5 1 30 14,617 6,678 < 1

10 30 10 5 40 16,531 12,880 1

11 30 15 6 45 17,325 13,179 150

12 30 20 5 40 16,362 12,388 3,195

13 40 5 2 41 20,143 8,253 < 1

14 40 10 6 55 24,388 20,566 42.62

15 40 15 6 55 21,117 17,415 2,614

16 40 20 7 61 25,216 20,227 11,388

17 50 5 2 51 24,142 8,705 < 1

18 50 10 5 60 27,060 23,631 6.04

19 50 15 5 60 29,491 25,497 15,834

20 50 20 7 71 27,911 21,896 1,185

21 75 5 3 78 44,172 13,904 < 1

22 75 10 8 103 41,493 36,325 378

23 75 15 8 103 41,054 36,493 6,967

24 75 20 6 90 40,673 35,868 12,375

25 100 5 4 106 56,461 16,480 < 1

26 100 10 9 136 56,143 49,989 32

27 100 15 11 155 54,528 48,059 52,280

28 100 20 9 136 57,395 49,634 1,068

29 150 5 3 153 86,751 25,598 < 1

30 150 10 7 171 82,911 75,107 35

31 150 15 13 228 84,054 75,458 65,546

32 150 20 8 178 85,010 77,531 108,000

33 200 5 5 210 113,006 32,612 < 1

34 200 10 10 245 115,517 109,004 96

35 200 15 10 245 104,323 95,112 7,310

36 200 20 11 255 106,902 100,031 108,000

APPENDIX A. SMALL TO LARGE INPUT SIZES RESULTS 95

A.3 Instance 3

Table A.3: Small to Large Input Sizes: Instance 3

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 10 5 2 11 5,122 3,171 < 1

2 10 10 3 13 5,717 4,460 < 1

3 10 15 2 11 4,741 3,240 < 1

4 10 20 2 11 4,702 3,163 < 1

5 20 5 1 20 11,072 4,629 < 1

6 20 10 4 26 9,782 6,820 < 1

7 20 15 3 23 10,339 8,015 69

8 20 20 4 26 10,260 7,726 80

9 30 5 1 30 16,792 5,655 < 1

10 30 10 4 36 15,750 12,209 21

11 30 15 6 45 17,036 12,801 118

12 30 20 6 45 17,249 13,141 363

13 40 5 3 43 21,512 8,278 < 1

14 40 10 6 55 21,645 17,322 25

15 40 15 6 55 23,622 18,736 103

16 40 20 6 55 23,813 18,692 1,405

17 50 5 2 51 28,126 8,675 < 1

18 50 10 6 65 28,621 24,204 17

19 50 15 8 78 28,811 23,515 578

20 50 20 7 71 27,186 22,632 376

21 75 5 3 78 37,457 12,770 < 1

22 75 10 10 120 43,170 38,400 452

23 75 15 7 96 38,346 33,109 304

24 75 20 7 96 40,088 35,129 108,000

25 100 5 4 106 56,192 17,813 < 1

26 100 10 8 128 52,002 47,092 95

27 100 15 12 166 58,335 50,520 1,992

28 100 20 13 178 51,515 45,282 32,221

29 150 5 3 153 86,917 27,695 < 1

30 150 10 7 171 84,813 77,693 10,147

31 150 15 12 216 77,743 70,719 108,000

32 150 20 12 216 78,131 70,464 108,000

33 200 5 5 210 110,658 34,392 < 1

34 200 10 10 245 107,880 103,052 87

35 200 15 11 255 111,720 103,721 26,496

36 200 20 11 255 108,053 98,300 108,000

APPENDIX A. SMALL TO LARGE INPUT SIZES RESULTS 96

A.4 Instance 4

Table A.4: Small to Large Input Sizes: Instance 4

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 10 5 2 11 5,209 3,544 < 1

2 10 10 2 11 4,973 3,517 < 1

3 10 15 2 11 4,897 3,139 < 1

4 10 20 3 13 5,157 4,488 10.26

5 20 5 1 20 11,974 4,419 < 1

6 20 10 5 30 11,745 8,341 1

7 20 15 4 26 10,770 7,777 32

8 20 20 3 23 10,267 7,710 151

9 30 5 1 30 16,525 5,435 < 1

10 30 10 6 45 17,271 13,315 16

11 30 15 6 45 17,462 13,384 241

12 30 20 6 45 17,697 13,173 236

13 40 5 3 43 21,789 8,167 < 1

14 40 10 6 55 24,068 20,429 89

15 40 15 6 55 20,457 16,325 107

16 40 20 6 55 21,924 17,245 935

17 50 5 2 51 25,672 8,969 < 1

18 50 10 6 65 28,351 24,281 84

19 50 15 7 71 26,971 21,710 117

20 50 20 7 71 26,871 21,539 2,225

21 75 5 3 78 40,761 12,725 < 1

22 75 10 6 90 43,216 38,427 165

23 75 15 8 103 41,050 35,693 5,115

24 75 20 8 103 41,932 35,294 6,251

25 100 5 4 106 56,747 18,563 < 1

26 100 10 10 145 54,705 48,399 1,721

27 100 15 8 128 53,919 46,823 1,194

28 100 20 11 155 53,442 46,656 33,368

29 150 5 3 153 82,763 26,679 < 1

30 150 10 8 178 74,870 68,263 225

31 150 15 10 195 82,684 74,151 5,998

32 150 20 14 241 80,995 72,670 108,000

33 200 5 4 206 111,199 34,271 < 1

34 200 10 10 245 108,189 102,077 23.08

35 200 15 12 266 114,488 105,961 108,000

36 200 20 12 266 106,630 96,696 108,000

Appendix B

Increasing Possible Controller Locations

Results

B.1 Instance 1

Table B.1: Increasing Possible Controller Locations: Instance 1

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 20 5 5 30 11,524 9,090 < 1

2 20 10 4 26 10,985 7,866 3

3 20 15 4 26 10,652 7,933 17

4 20 20 5 30 11,915 8,259 85

5 20 25 3 23 10,220 7,693 857

6 20 30 3 23 10,150 7,652 4,396

7 20 40 5 30 12,240 7,875 244

8 20 50 3 23 8,945 6,344 628

9 20 75 4 26 9,951 6,779 5,621

97

APPENDIX B. INCREASING POSSIBLE CONTROLLER LOCATIONS RESULTS98

B.2 Instance 2

Table B.2: Increasing Possible Controller Locations: Instance 2

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 20 5 4 26 10,887 12,037 < 1

2 20 10 5 30 12,201 13,289 < 1

3 20 15 4 26 10,442 10,347 7

4 20 20 4 26 11,251 11,687 336

5 20 25 5 30 14,250 14,465 1,123

6 20 30 4 26 11,557 11,468 430

7 20 40 4 26 11,950 11,848 578

8 20 50 4 26 10,583 11,798 108,000

9 20 75 4 26 10,165 10,522 108,000

B.3 Instance 3

Table B.3: Increasing Possible Controller Locations: Instance 3

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 20 5 4 26 11,580 12,688 < 1

2 20 10 4 26 10,359 10,670 2

3 20 15 4 26 9,264 10,711 532

4 20 20 4 26 9,320 10,259 8,374

5 20 25 4 26 9,523 10,333 23,723

6 20 30 4 26 10,485 10,562 429

7 20 40 4 26 11,072 11,623 108,000

8 20 50 5 30 12,273 12,844 108,000

9 20 75 4 26 10,757 11,689 108,000

APPENDIX B. INCREASING POSSIBLE CONTROLLER LOCATIONS RESULTS99

B.4 Instance 4

Table B.4: Increasing Possible Controller Locations: Instance 4

CPLEX

Problem |S| |P | |P ′| |L′| Packets Cost($) CPU(s)

1 20 5 5 30 13,297 14,471 < 1

2 20 10 4 26 9,815 10,400 9

3 20 15 3 23 8,877 8,999 5

4 20 20 5 30 12,011 13,203 77,457

5 20 25 4 26 11,348 11,800 1,468

6 20 30 4 26 10,110 10,321 168

7 20 40 4 26 10,320 10,348 1,641

8 20 50 4 26 10,355 10,189 1,919

9 20 75 5 30 12,033 12,675 108,000

Appendix C

Controller Placement Program Helper

$ python cli.py --help

Usage: cli.py [options]

Copyright 2014 Afrim Sallahi.

Options:

--version show program ’s version number and exit

-h, --help show this help message and exit

-c CONFSECTION , --confsection=CONFSECTION

The configuration section of where the input

parameters should be loaded.

-a EBULK , --ebulk=EBULK

Configuration of solution files to do the

planning , eg

[10 20 30],[5 10]

-b BULK , --bulk=BULK Bulk generate/plot. switches then placements

, eg [10

20 30] ,[5 10]

-e, --expansion Perform the expansion model. [default: False

]

-i FILE , --in=FILE The input directory [default: ../ input]

-o FILE , --out=FILE The output directory [default: ../ output]

-x, --cplex Generate the CPLEX files [default: False]

-t, --script Generate the SCRIPT files [default: False]

-p, --plot Plot the result file [default: False]

-s FILE , --settings=FILE

The overall input file [default: ./ config.

txt]

100

